1.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
2.Androgen receptor inhibitors in treating prostate cancer.
Ryan N COLE ; Qinghua FANG ; Kanako MATSUOKA ; Zhou WANG
Asian Journal of Andrology 2025;27(2):144-155
Androgens play an important role in prostate cancer development and progression. Androgen action is mediated through the androgen receptor (AR), a ligand-dependent DNA-binding transcription factor. AR is arguably the most important target for prostate cancer treatment. Current USA Food and Drug Administration (FDA)-approved AR inhibitors target the ligand-binding domain (LBD) and have exhibited efficacy in prostate cancer patients, particularly when used in combination with androgen deprivation therapy. Unfortunately, patients treated with the currently approved AR-targeting agents develop resistance and relapse with castration-resistant prostate cancer (CRPC). The major mechanism leading to CRPC involves reactivation of AR signaling mainly through AR gene amplification, mutation, and/or splice variants. To effectively inhibit the reactivated AR signaling, new approaches to target AR are being actively explored. These new approaches include novel small molecule inhibitors targeting various domains of AR and agents that can degrade AR. The present review provides a summary of the existing FDA-approved AR antagonists and the current development of some of the AR targeting agents.
Humans
;
Male
;
Androgen Receptor Antagonists/therapeutic use*
;
Receptors, Androgen/metabolism*
;
Prostatic Neoplasms/drug therapy*
;
Prostatic Neoplasms, Castration-Resistant/drug therapy*
;
Signal Transduction/drug effects*
3.Expressions of androgen receptor and human epidermal growth factor receptor 2 in urinary bladder urothelial carcinoma with incidental prostate cancer and clinicopathological features of the malignancy.
Xiao-Die ZHOU ; Na SHI ; Jian-Jun WANG ; Xuan WANG ; Bo YU ; Qun-Li SHI ; Qiu RAO ; Wei BAO
National Journal of Andrology 2024;30(12):1081-1085
OBJECTIVE:
To investigate the clinicopathological features and prognosis of urinary bladder urothelial carcinoma (UBUC) with incidental prostate cancer (IPCa).
METHODS:
We retrospectively analyzed the clinicopathological features of 65 cases of UBUC and 38 cases of UBUC + IPCa after radical cystoprostatectomy (RCP) from January 2017 to February 2020. We compared their expressions of the immunohistochemical markers androgen receptor (AR) and (human epidermal growth factor receptor 2,HER2) between the two groups of patients, and analyzed their clinicopathological characteristics by chi-square test and their survival rates using the Kaplan-Meier method and log-rank test.
RESULTS:
The detection rate of UBUC + IPCa was 16.5%, and that of clinically significant IPCa was 39.5%, with preoperative PSA≥4 μg/L in 23.7% of the patients. Compared with the patients with UBUC, most of the UBUC + IPCa cases had no smoking history (73.8% vs 92.1%, P = 0.024), and fewer had histological variants (43.1% vs 10.5%, P = 0.003). The incidence rate of vascular invasion was significantly higher in the UBUC than in the UBUC + IPCa group (49.2% vs 21.1%, P = 0.005), and so was the rate of advanced cases (67.7% vs 31.6%, P<0.001). In comparison with the patients of the UBUC group, those of the UBUC + IPCa group showed remarkably higher expressions of AR (9.2% vs 31.6%, P = 0.004) and HER2 (43.1% vs 71.1%, P = 0.006). The mean overall survival time was longer in the UBUC + IPCa than in the UBUC group (48.8 mo [95% CI: 2.5-42.6 mo] vs 39.9 mo [95% CI: 2.8-34.5 mo]), but with no statistically significant difference between the two groups (P = 0.608).
CONCLUSION
Standardized sampling of prostate samples after RCP helps to improve the detection rate of IPCa. Preoperative level of PSA is not a good predictor of IPCa. Few patients with UBUC + IPCa have a history of cigarette smoking, and the predominant histological type of the malignancy is high-grade invasive urothelial carcinoma, which is not significantly different from UBUC in prognosis. The expressions of HER2 and AR are significantly higher in UBUC + IPCa than in UBUC, suggesting that UBUC + IPCa may benefit from HER2- and AR-targeted therapy.
Humans
;
Male
;
Urinary Bladder Neoplasms/metabolism*
;
Receptors, Androgen/metabolism*
;
Prostatic Neoplasms/metabolism*
;
Retrospective Studies
;
Receptor, ErbB-2/metabolism*
;
Prognosis
;
Middle Aged
;
Aged
;
Survival Rate
;
Prostatectomy
4.Research Progress in Androgen Receptor and Triple Negative Breast Cancer.
Acta Academiae Medicinae Sinicae 2023;45(2):303-310
The research on androgen receptor (AR) in breast cancer is advancing.Although the prognostic value of AR in triple negative breast cancer (TNBC) is controversial,a variety of studies have demonstrated that the lack of AR expression exacerbates disease progression.Moreover,the TNBC subtype of AR(-) is more aggressive than that of AR(+) due to the lack of prognostic biomarkers and therapeutic targets.With the discovery and deepening research of novel therapeutic targets such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin and S-phase kinase-associated protein 2 signaling pathways,as well as the emerging of immunotherapies,the treatment options for TNBC are increasing.Regarding the role of AR in TNBC,the studies about the tumor biology of AR(-)TNBC and novel biomarkers for improved management of the disease remain insufficient.In this review,we summarize the research progress of AR in TNBC,put forward avenues for future research on TNBC,and propose potential biomarkers and therapeutic strategies that warrant investigation.
Humans
;
Triple Negative Breast Neoplasms/pathology*
;
Receptors, Androgen/metabolism*
;
Prognosis
;
Biomarkers
;
Signal Transduction
5.FOXA1 in prostate cancer.
Hui-Yu DONG ; Lei DING ; Tian-Ren ZHOU ; Tao YAN ; Jie LI ; Chao LIANG
Asian Journal of Andrology 2023;25(3):287-295
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Humans
;
Male
;
Androgen Antagonists/therapeutic use*
;
Androgens/metabolism*
;
Hepatocyte Nuclear Factor 3-alpha/metabolism*
;
Mutation
;
Prostatic Neoplasms, Castration-Resistant/drug therapy*
;
Receptors, Androgen/metabolism*
6.Investigation of androgen receptor-dependent alternative splicing has identified a unique subtype of lethal prostate cancer.
Sean SELTZER ; Paresa N GIANNOPOULOS ; Tarek A BISMAR ; Mark TRIFIRO ; Miltiadis PALIOURAS
Asian Journal of Andrology 2023;25(3):296-308
A complete proteomics study characterizing active androgen receptor (AR) complexes in prostate cancer (PCa) cells identified a diversity of protein interactors with tumorigenic annotations, including known RNA splicing factors. Thus, we chose to further investigate the functional role of AR-mediated alternative RNA splicing in PCa disease progression. We selected two AR-interacting RNA splicing factors, Src associated in mitosis of 68 kDa (SAM68) and DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) to examine their associative roles in AR-dependent alternative RNA splicing. To assess the true physiological role of AR in alternative RNA splicing, we assessed splicing profiles of LNCaP PCa cells using exon microarrays and correlated the results to PCa clinical datasets. As a result, we were able to highlight alternative splicing events of clinical significance. Initial use of exon-mini gene cassettes illustrated hormone-dependent AR-mediated exon-inclusion splicing events with SAM68 or exon-exclusion splicing events with DDX5 overexpression. The physiological significance in PCa was investigated through the application of clinical exon array analysis, where we identified exon-gene sets that were able to delineate aggressive disease progression profiles and predict patient disease-free outcomes independently of pathological clinical criteria. Using a clinical dataset with patients categorized as prostate cancer-specific death (PCSD), these exon gene sets further identified a select group of patients with extremely poor disease-free outcomes. Overall, these results strongly suggest a nonclassical role of AR in mediating robust alternative RNA splicing in PCa. Moreover, AR-mediated alternative spicing contributes to aggressive PCa progression, where we identified a new subtype of lethal PCa defined by AR-dependent alternative splicing.
Humans
;
Male
;
Alternative Splicing
;
Cell Line, Tumor
;
DEAD-box RNA Helicases/metabolism*
;
Disease Progression
;
Gene Expression Regulation, Neoplastic
;
Prostatic Neoplasms/pathology*
;
Receptors, Androgen/metabolism*
;
RNA Splicing Factors/metabolism*
7.Up-regulation of androgen receptor by heat shock protein 27 and miR-1 induces pathogenesis of androgenic alopecia.
Journal of Central South University(Medical Sciences) 2022;47(1):72-78
OBJECTIVES:
The pathogenesis of androgenetic alopecia (AGA) is related to the level of androgen and its metabolic pathways. The binding of androgen and androgen receptor (AR) depends on the assistance of heat shock protein 27 (HSP27). HSP27 combined with microRNAs (miR)-1 can regulate AR levels. However, it is not clear whether HSP27 and miR-1 jointly participate in the pathogenesis of AGA. This study aims to investigate the role of AR up-regulation in the pathogenesis of AGA and underlying mechanisms.
METHODS:
A total of 46 male AGA patients (AGA group), who admitted to the First Affiliated Hospital of Guangzhou Medical University from September 2019 to February 2020, and 52 healthy controls admitted to the same period were enrolled in this study. Serum levels of dihydrotestosterone (DHT) and HSP27 in patients and healthy controls were measured by ELISA. Western blotting was used to detect the protein expression of HSP27 and AR in scalp tissues of patients and the healthy controls. The levels of HSP27, AR, and miR-1 were analyzed using real-time PCR. Human dermal papilla cells were transfected with HSP27 siRNA to inhibit the expression of HSP27. MiR-1 and miR-1 inhibitors were transfected simultaneously or separately into cells and then the changes in AR protein expression were detected.
RESULTS:
The levels of DHT and HSP27 in the AGA group were (361.4±187.7) pg/mL and (89.4±21.8) ng/mL, respectively, which were higher than those in the control group [(281.8±176.6) pg/mL and (41.2±13.7) ng/mL, both P<0.05]. However, there was no significant difference in serum HSP27 and AR levels among AGA patients with different degrees of hair loss (P>0.05). Correlation analysis showed that there was a positive correlation between HSP27 level and DHT level in the AGA patients (P<0.05). The level of HSP27 mRNA in scalp tissue was negatively correlated with that of miR-1 mRNA (P<0.05). Compared with the control group, the levels of HSP27 protein, AR protein, HSP27 mRNA, and AR mRNA in scalp tissues of AGA group were significantly increased (P<0.05). The up-regulation of HSP27 in scalp tissues of AGA patients was closely related to the increased levels of AR. However, the level of miR-1 in scalp tissues of AGA patients was significantly down-regulated, contrary to the expression of AR (P<0.05). Further in cell studies showed that inhibition of HSP27 or miR-1 expression in human dermal papilla cells could inhibit the expression of AR, and inhibition of both HSP27 and miR-1 expression was found to have an accumulative effect on AR, with statistically significant differences (all P<0.05).
CONCLUSIONS
HSP27 could combine with miR-1 to up-regulate AR levels, which is closely related to the development of AGA.
Alopecia/pathology*
;
HSP27 Heat-Shock Proteins/metabolism*
;
Humans
;
Male
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Receptors, Androgen/metabolism*
;
Up-Regulation
8.The extract of Celtis choseniana Nakai alleviates testosterone-induced benign prostatic hyperplasia through inhibiting 5α reductase type 2 and the Akt/NF-κB/AR pathway.
Geum-Lan HONG ; Tae-Won KIM ; Hui-Ju LEE ; Yae-Ji KIM ; Kyung-Hyun KIM ; Ju-Young JUNG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(7):518-526
Benign prostatic hyperplasia (BPH) is a chronic male disease characterized by the enlarged prostate. Celtis chosenianaNakai (C. choseniana) is medicinally used to alleviate pain, gastric disease, and lung abscess. In this study, the effect of C. choseniana extract on BPH was investigated using testosterone-induced rats. Sprague Dawley rats were divided into five groups: control, BPH (testosterone 5 mg·kg-1), Fina (finasteride 2 mg·kg-1), and C. choseniana (50 and 100 mg·kg-1). After four weeks of TP treatment with finasteride or C. choseniana, prostate weights and DHT levels were measured. In addition, the prostates were histopathologically examined and measured for protein kinase B (Akt)/nuclear factor-κB (NF-κB)/AR signaling, proliferation, apoptosis, and autophagy. Prostate weight and epithelial thickness were reduced in the C. choseniana groups compared with that in the BPH group. The extract of C. choseniana acted as a 5α reductase inhibitor, reducing DHT levels in the prostate. Furthermore, the extract of C. choseniana blocked the activation of p-Akt, nuclear NF-κB activation and reduced the expression of AR and PSA compared with BPH. Moreover, the expression of Bax, PARP-1, and p53 increased, while the expression of bcl-2 decreased. The present study demonstrated that C. choseniana extract alleviated testosterone-induced BPH by suppressing 5α reductase and Akt/NF-κB activation, reducing AR signaling and inducing apoptosis and autophagy in the prostate. These results suggested that C. choseniana probably contain potential herbal agents to alleviate BPH.
Animals
;
Cholestenone 5 alpha-Reductase/metabolism*
;
Finasteride/adverse effects*
;
Male
;
NF-kappa B/genetics*
;
Plant Extracts/therapeutic use*
;
Prostatic Hyperplasia/drug therapy*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Androgen/metabolism*
;
Testosterone
;
Ulmaceae/metabolism*
9.Pioneer of prostate cancer: past, present and the future of FOXA1.
Mona TENG ; Stanley ZHOU ; Changmeng CAI ; Mathieu LUPIEN ; Housheng Hansen HE
Protein & Cell 2021;12(1):29-38
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Amino Acid Sequence
;
Epigenesis, Genetic
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
Hepatocyte Nuclear Factor 3-alpha/metabolism*
;
Histone Demethylases/metabolism*
;
Histones/metabolism*
;
Humans
;
Male
;
Mutation
;
Prostate/pathology*
;
Prostatic Neoplasms/pathology*
;
Protein Binding
;
Protein Processing, Post-Translational
;
Receptors, Androgen/metabolism*
;
Signal Transduction
;
Transcription, Genetic
10.Research Progress of the Roles of Ubiquitination/Deubiquitination in Androgen Receptor Abnormalities and Prostate Cancer.
Wei-Yu ZHANG ; Jian-Hua ZHOU ; Huan-Rui WANG ; Qing MU ; Qi WANG ; Ke-Xin XU ; Tao XU ; Hao HU
Acta Academiae Medicinae Sinicae 2020;42(2):251-256
Ubiquitin is a small molecule protein consisting of 76 amino acids,widely found in eukaryotic cells. The process by which ubiquitin binding to a specific protein is called ubiquitination. Deubiquitination is the reversed process of ubiquitination. Ubiquitination stimulates downstream signal,including complex assembly,protein conformation and activity changes,proteolysis,autophagy,guilt,chromatin remodeling,and DNA repair. More than 80% of eukaryotic protein degradation is mediated by the ubiquitination system,and ubiquitin-dependent proteolysis is an extremely complex process involving many biomolecular processes. By regulating protein homeostasis,ubiquitination can also regulate a variety of biological processes including cell cycle,cell proliferation,and apoptosis,which are closely related to tumorigenesis and progression. Many abnormalities of androgen receptor (AR) including AR gene amplification,mutation,shear mutation,and AR activity enhancement are closely related to prostate cancer progression. In particular,prostate cancer progression is regulated by the ubiquitination/deubiquitination processes. This article summarizes the recent research advances in the roles of ubiquitination/deubiquitination in AR abnormalities and prostate cancer.
Cell Line, Tumor
;
Humans
;
Male
;
Prostatic Neoplasms
;
metabolism
;
pathology
;
Proteolysis
;
Receptors, Androgen
;
metabolism
;
Ubiquitination

Result Analysis
Print
Save
E-mail