1.The impact of amygdala glutamate receptors on cardiovascular function in rats with post-traumatic stress disorder.
Ya-Yang WU ; Kun-Yi CAI ; Yu-Jie WU ; Chao ZHENG ; Meng-Ya WANG ; Huan-Huan ZHANG
Acta Physiologica Sinica 2023;75(5):611-622
Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Stress Disorders, Post-Traumatic
;
Receptors, AMPA
;
6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology*
;
Receptors, Glutamate/metabolism*
;
Amygdala
;
Weight Gain
;
Medulla Oblongata/physiology*
;
Blood Pressure
2.A Critical Role for γCaMKII in Decoding NMDA Signaling to Regulate AMPA Receptors in Putative Inhibitory Interneurons.
Xingzhi HE ; Yang WANG ; Guangjun ZHOU ; Jing YANG ; Jiarui LI ; Tao LI ; Hailan HU ; Huan MA
Neuroscience Bulletin 2022;38(8):916-926
CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTPE→I). However, the molecular mechanism underlying how γCaMKII mediates LTPE→I remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Hippocampus/metabolism*
;
Interneurons/physiology*
;
Long-Term Potentiation/physiology*
;
N-Methylaspartate/metabolism*
;
Receptors, AMPA/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Synapses/physiology*
3.Unraveling the Mechanisms of Memory Extinction.
Neuroscience Bulletin 2018;34(2):385-388
4.Effects of exposure to aluminum on long-term potentiation and AMPA receptor subunits in rats in vivo.
Jing SONG ; Ying LIU ; Hui Fang ZHANG ; Qin Li ZHANG ; Qiao NIU
Biomedical and Environmental Sciences 2014;27(2):77-84
OBJECTIVETo explore the effects of exposure to aluminum (Al) on long-term potentiation (LTP) and AMPA receptor subunits in rats in vivo.
METHODSDifferent dosages of aluminum-maltolate complex [Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.) injection and subchronic intraperitoneal (i.p.) injection. Following Al exposure, the hippocampal LTP were recorded by field potentiation technique in vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay.
RESULTSAcute Al treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluR1 and GluR2 in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. The dose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic Al treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular pools to synaptic sites and an additional reduction in the expression of the subunits.
CONCLUSIONAl(mal)3 obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.
Aluminum ; toxicity ; Animals ; Down-Regulation ; drug effects ; genetics ; physiology ; Hippocampus ; drug effects ; physiology ; Long-Term Potentiation ; drug effects ; genetics ; physiology ; Male ; Protein Transport ; drug effects ; genetics ; physiology ; Random Allocation ; Rats ; Receptors, AMPA ; antagonists & inhibitors ; genetics ; metabolism ; Toxicity Tests, Acute ; Toxicity Tests, Subchronic
5.Activation of hippocampal D1 dopamine receptor inhibits glutamate-mediated depression induced by chronic unpredictable mild stress in rats.
Ting-Ting YUAN ; Hui QIAO ; Su-Ping DONG ; Shu-Cheng AN
Acta Physiologica Sinica 2011;63(4):333-341
The present study was to investigate the role of dopamine D1 receptors and its relationship with glutamate, N-methyl-D-aspartic acid (NMDA) receptor and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor in depression induced by chronic unpredictable mild stress (CUMS). CUMS-induced depression model was established in Sprague-Dawley rats, and intrahippocampal microinjections of D1 dopamine receptor agonist SKF38393, non-competitive NMDA receptor antagonist MK-801 and AMPA receptor antagonist NBQX were respectively adopted by rat brain stereotaxic coordinates. The behavioral observations were conducted by measurement of weight changes, sucrose preference test, open-field test and tail suspension test. The concentration of glutamic acid and the expression of its receptors' subunits were detected by HPLC and Western blot, respectively. The results showed that, compared with control group, CUMS rats showed depression-like behavioral changes, higher concentration of glutamic acid, lower expressions of NMDA receptor (NR1) and AMPA receptor (GluR2/3) in hippocampus. Pretreatment with injection of SKF38393 could rescue such depression effect of CUMS, decrease the concentration of glutamic acid, and increase the expressions of NMDA receptor (NR1), AMPA receptor (GluR2/3) in hippocampus. Pretreatment with MK-801 could enhance the antidepressant effect of SKF38393, while NBQX weakened. These results suggest that agonists of D1 dopamine receptor could reduce the concentration of glutamic acid in hippocampus, and its antidepressant effect may be mediated by AMPA receptor partially.
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
;
pharmacology
;
Animals
;
Depression
;
etiology
;
physiopathology
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
Glutamates
;
metabolism
;
Hippocampus
;
metabolism
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, AMPA
;
metabolism
;
Receptors, Dopamine D1
;
agonists
;
physiology
;
Stress, Physiological
;
physiology
6.Sex difference in performance in elevated plus maze and hippocampal GluR1 level.
Xiaojun XIANG ; Wei HAO ; Therese A KOSTEN
Journal of Central South University(Medical Sciences) 2011;36(8):750-753
OBJECTIVE:
To explore whether sex difference exists in the performance in each arm of elevated plus maze (EPM) and GluR1 level in the hippocampus of female and male Sprague-Dawley rats.
METHODS:
Eleven male and 10 female SD rats were tested for 5 minutes in the EPM. These rats were decapitated 30 min after testing. The left and right hippocampus were dissected. Samples were stored at -80 degree for protein extracting. Western blot was used to detect the GluR1 levels in the hippocampus.
RESULTS:
Female rats exhibited less anxiety-like behaviors than male rats in the EPM (P<0.05).Female rats had lower GluR1 levels in total and left hippocampus than those of male rats (P<0.05).
CONCLUSION
Sex difference exists between female and male rats in the EPM and hippocampal GluR1.
Animals
;
Anxiety
;
metabolism
;
physiopathology
;
Behavior, Animal
;
Female
;
Hippocampus
;
metabolism
;
physiology
;
Male
;
Maze Learning
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, AMPA
;
metabolism
;
physiology
;
Sex Characteristics
7.The expressions of AMPAR/GluR2 in hippocampal CA1 area of rats before and after late-phase long-term potentiation reversal.
Li ZHANG ; Yan-Hai LI ; Kai MENG ; Wen XIE
Acta Physiologica Sinica 2010;62(1):23-29
Late-phase long-term potentiation (L-LTP) plays a very important role in the maintenance of long-term memory in hippocampus. However, studies have shown that L-LTP can be reversed by subsequent neuronal activity. The aim of the present study is to investigate whether the presynaptic mechanism and the change of AMPARs expressions are involved in the reversal of L-LTP in hippocampal CA1 area. Standard extracellular recording technique was used to record the potential change in the stratum radiatum of CA1 area of adult rat hippocampal slices. Two hours after LTP induction, which was induced by high-frequency stimulation (HFS), two episodes of high-intensity paired-pulse low-frequency stimulation (HI-PP-LFS) were delivered to induce L-LTP reversal. Paired-pulse ratios (PPR) were obtained before LTP induction, 2 h after LTP induction and 30 min after LTP reversal. On the other hand, immunofluorescence histochemistry was used to detect AMPARs expressions before and after L-LTP reversal. The results showed that, after 2 h of induction, L-LTP was partially reversed by two episodes of HI-PP-LFS, and the percentage of depotentiation was 61.79%+/-14.51%. PPR obtained before and after LTP induction, and as well that after LTP reversal, are all more than 1, showing paired-pulse facilitation (PPF). Multiple comparison indicated PPR before LTP induction was the greatest one, and PPR after LTP induction was the smallest. In addition, no significant difference was observed in the intensity of AMPAR/GluR2 immunoreactivity in CA1 area among control group, LTP group and LTP reversal group. These results suggest that the presynaptic mechanism is involved in both the maintenance and reversal of L-LTP and there is no change in AMPAR/GluR2 expression before and after the reversal of L-LTP.
Animals
;
CA1 Region, Hippocampal
;
metabolism
;
physiology
;
Electric Stimulation
;
Long-Term Potentiation
;
physiology
;
Male
;
Presynaptic Terminals
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, AMPA
;
metabolism
8.Developmental regulation of long term potentiation at layer II/III to II/III synapses of rat visual cortex.
Zhou JIN ; Yi-Ping CAI ; Dong-Sheng LI ; Jian-Xin DENG ; Jian SHI
Acta Physiologica Sinica 2009;61(5):458-468
In the present research, patch-clamp whole-cell recording was used to study the developmental changes of the internal horizontal synaptic plasticity in layer II/III of rats' primary visual cortices. Pairing stimulation was used to induce long term potentiation (LTP) of neurons in layer II/III from layer II/III and layer IV. The data indicate that: (1) Responses of layer II/III neurons can be evoked independently at II/III-II/III and IV-II/III synapses by horizontal and vertical stimulations; (2) LTP can be induced from neurons in the layer II/III by horizontal tetanic stimulation at II/III-II/III synapses till postnatal day12 (P12, before eyes open); (3) Meanwhile, only short term potentiation (STP) at IV-II/III synapses can be induced by horizontal tetanic stimulation before eyes open; (4) After P12, a robust LTP at IV-II/III synapses can be induced by horizontal tetanic stimulation; (5) At P14, when vertical and horizontal tetanic stimulations were given to the same neuron, the LTP at IV-II/III synapses was weaker than that induced by vertical stimulation alone, suggesting that vertical synaptic modification was negatively regulated by horizontal inputs when two-direction synaptic inputs were presented at the same time; (6) Spontaneous responses of AMPA receptors (AMPARs) in the layer II/III neuron of rats' primary visual cortices are regulated by the development. The frequency of AMPARs-mediated postsynaptic currents was at a low level before eyes open, increased sharply at P12-P14, and slightly decreased after P18. And the amplitude of spontaneous AMPARs currents slowly decreased after P12. The results demonstrated that both the strength of horizontal synaptic modification and the effects of horizontal inputs on the vertical synaptic connection are regulated by the development. II/III-II/III synaptic communication has dual effects on the IV-II/III synapses, which may be involved in a competitive machinery of neural circuitry maturation and the formation of visual function columns.
Animals
;
Long-Term Potentiation
;
Neuronal Plasticity
;
Neurons
;
physiology
;
Patch-Clamp Techniques
;
Rats
;
Receptors, AMPA
;
physiology
;
Synapses
;
physiology
;
Visual Cortex
;
physiology
9.Modulation and function of calcium signaling in retinal horizontal cells..
Xu-Long WANG ; Xiao-Dong JIANG ; Yan SUN ; Ting LV ; Pei-Ji LIANG
Acta Physiologica Sinica 2009;61(1):1-8
Calcium is one of the most versatile intracellular second messengers, which plays crucial roles in many intracellular signaling pathways. Researches on intracellular calcium distribution, regulation and function are important for our understanding of cellular physiology. In this mini-review, the regulation of intracellular calcium signal in retinal horizontal cells and the relevant physiological functions were introduced based on the experiments carried out in our laboratory. Intracellular calcium dynamics following the activation of AMPA and NMDA receptors were introduced based on our experiments performed on carp retinal horizontal cells using calcium imaging technique and computational methods. An initial peak response was observed in both cases, which indicated an active participation of intracellular calcium store during the calcium dynamics initiated by AMPA/NMDA receptor activation. Intracellular recording experiments indicated that calcium signaling was crucial for the gradual enhancement of the retinal horizontal cell's responsiveness in exposure to repetitive red flashes. Possible roles of intracellular calcium signaling in the regulation of GABA transporter activity were also introduced based on our whole-cell recording experiments performed on isolated carp retinal horizontal cells.
Animals
;
Calcium
;
metabolism
;
Calcium Signaling
;
Carps
;
Cells, Cultured
;
Patch-Clamp Techniques
;
Receptors, AMPA
;
metabolism
;
Receptors, N-Methyl-D-Aspartate
;
metabolism
;
Retinal Horizontal Cells
;
physiology
10.Bradykinin modulates ion channel in inflammatory pain.
Acta Pharmaceutica Sinica 2009;44(10):1066-1071
Injury or inflammation induces release of a range of inflammatory mediators. Bradykinin is one of the most important inflammatory mediators and plays a crucial role in mediating inflammatory pain. It is well known that multiple ion channels located in the nociceptors participate in pain sensation. Recent studies demonstrate an important role of bradykinin in regulating the function and expression of pain-related ion channels. This paper summarizes the recent advances in the understanding of the role of bradykinin in modulation of the channels and discusses future possibilities in the treatment of inflammatory pain.
Acid Sensing Ion Channels
;
Animals
;
Bradykinin
;
pharmacology
;
physiology
;
Humans
;
Inflammation
;
complications
;
Inflammation Mediators
;
pharmacology
;
physiology
;
Ion Channels
;
KCNQ Potassium Channels
;
metabolism
;
physiology
;
Nerve Tissue Proteins
;
metabolism
;
Pain
;
etiology
;
metabolism
;
physiopathology
;
Receptors, AMPA
;
metabolism
;
Receptors, N-Methyl-D-Aspartate
;
metabolism
;
Receptors, Purinergic P2X3
;
metabolism
;
Sodium Channels
;
metabolism
;
TRPA1 Cation Channel
;
TRPV Cation Channels
;
metabolism
;
physiology
;
Transient Receptor Potential Channels
;
metabolism
;
physiology

Result Analysis
Print
Save
E-mail