1.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
2.Multiple components of Mahuang Shengma Decoction on prevention and treatment of acute lung injury based on RAGE/NF-κB signaling pathway.
Yan-Miao MA ; Li-Jun ZHAO ; Ming-Ran LIU ; Kai LIANG ; Bo SONG ; Shu-Xia BAI ; Zhen-Yu LI ; Zhi CHAI ; Tao PENG
China Journal of Chinese Materia Medica 2021;46(21):5693-5700
To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.
Acute Lung Injury/genetics*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Lipopolysaccharides
;
Lung/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Network Pharmacology
;
Receptor for Advanced Glycation End Products/metabolism*
;
Signal Transduction
3.Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway.
Xing LV ; Gao-Hong LV ; Guo-Ying DAI ; Hong-Mei SUN ; Hui-Qin XU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(11):844-855
The aim of this study was to investigate the effects of high-advanced glycation end products (AGEs) diet on diabetic vascular complications. The Streptozocin (STZ)-induced diabetic mice were fed with high-AGEs diet. Diabetic characteristics, indicators of renal and cardiovascular functions, and pathohistology of pancreas, heart and renal were evaluated. AGEs/RAGE/ROS pathway parameters were determined. During the experiments, the diabetic mice exhibited typical characteristics including weight loss, polydipsia, polyphagia, polyuria, high-blood glucose, and low-serum insulin levels. However, high-AGEs diet effectively aggravated these diabetic characteristics. It also increased the 24-h urine protein levels, serum levels of urea nitrogen, creatinine, c-reactive protein (CRP), low density lipoprotein (LDL), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the diabetic mice. High-AGEs diet deteriorated the histology of pancreas, heart, and kidneys, and caused structural alterations of endothelial cells, mesangial cells and podocytes in renal cortex. Eventually, high-AGEs diet contributed to the high-AGE levels in serum and kidneys, high-levels of reactive oxygen species (ROS) and low-levels of superoxide dismutase (SOD) in serum, heart, and kidneys. It also upregulated RAGE mRNA and protein expression in heart and kidneys. Our results showed that high-AGEs diet deteriorated vascular complications in the diabetic mice. The activation of AGEs/RAGE/ROS pathway may be involved in the pathogenesis of vascular complications in diabetes.
Animals
;
Diabetes Mellitus, Experimental
;
complications
;
metabolism
;
Diabetic Angiopathies
;
genetics
;
metabolism
;
Diet
;
adverse effects
;
Glycation End Products, Advanced
;
metabolism
;
Humans
;
Interleukin-6
;
metabolism
;
Kidney
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Pancreas
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Receptor for Advanced Glycation End Products
;
genetics
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
4.Role of RAGE in lipopolysaccharide-induced cytoskeletal changes in mouse pulmonary microvascular endothelial cells.
Xiao-Yan ZHOU ; Wei-Jin ZHANG ; Qiao-Bing HUANG ; Xiao-Hua GUO
Journal of Southern Medical University 2015;35(1):6-11
OBJECTIVETo investigate lipopolysaccharide (LPS)-induced changes of cytoskeletal filamentous actin in primary isolated pulmonary microvascular endothelial cells (PMVECs) from wild-type and RAGE knock-out mouse.
METHODSThe lungs of wild-type and RAGE knock-out mice were digested with collagenase type I to obtain endothelial cells purified by anti-CD31-coupled magnetic beads. The PMVEC identified by factor VIII labeling were stimulated with LPS at different concentrations and the changes of filamentous actin were observed by confocal microscopy.
RESULTSThe cultured primary cells showed typical endothelial cell phenotype as examined with factor VIII labeling. LPS stimulation caused rearrangement of the cytoskeletal filament F-actin in wild-type mouse PMVECs with stress fiber formation, but such changes were not obvious in RAGE knock-out mouse PMVECs.
CONCLUSIONMouse PMVECs of a high purity can be obtained by immune magnetic beads. RAGE is involved in LPS-induced destruction of mouse PMVEC cytoskeletons.
Actins ; metabolism ; Animals ; Cells, Cultured ; Cytoskeleton ; metabolism ; Endothelial Cells ; cytology ; Lipopolysaccharides ; Lung ; cytology ; Mice ; Mice, Knockout ; Microvessels ; cytology ; Phenotype ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; genetics ; metabolism
5.Effects of glucocorticoid on RAGE-NF-κB pathway in hyperoxia-induced lung tissues of neonatal rats.
Jian HU ; Min YU ; Yun TANG ; Zhao-Fang TIAN
Chinese Journal of Contemporary Pediatrics 2015;17(1):81-85
OBJECTIVETo explore the change of RAGE-NF-κB signaling pathway during the course of hyperoxia-induced lung injury in newborn rats, and the effect of glucocorticoid on this pathway.
METHODSTwenty-four Sprague-Dawley neonatal rats were randomly divided into three groups (n=8 each) : sham control (control group), hyperoxia-induced acute lung injury (model group) and glucocorticoid-treated acute lung injury (glucocorticoid group). Rats were sacrificed at 13 days after birth. RAGE and NF-κB expression levels in lung tissues were detected by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry analysis. The levels of tumor necrosis factor α (TNF-α) and sRAGE in bronchoalveolar lavage fluid (BALF) and serum were measured using ELISA. Lung damage was evaluated by histological examinations.
RESULTSRAGE and NF-κB mRNA and protein expression levels in lung tissues were significantly increased in the model and glucocorticoid groups compared with the control group (P<0.05). Serum RAGE concentrations were significantly increased but RAGE concentrations in BALF were significantly reduced in the model and glucocorticoid groups compared with the control group (P<0.05). RAGE and NF-κB expression at both mRNA and protein levels in lung tissues was significantly lower in the glucocorticoid group than in the model group (P<0.05). RAGE concentrations were significantly lower in serum (P<0.05), but were higher in BALF (P<0.05) in the glucocorticoid group than in the model group.
CONCLUSIONSRAGE-NF-κB pathway plays an important role in hyperoxia-induced lung injury in neonatal rats, and glucocorticoid administration may play a protective role against the lung injury by down-regulating RAGE-NF-κB signaling pathway.
Animals ; Animals, Newborn ; Glucocorticoids ; pharmacology ; Hyperoxia ; complications ; Lung Injury ; prevention & control ; NF-kappa B ; analysis ; genetics ; physiology ; Rats ; Rats, Sprague-Dawley ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; analysis ; genetics ; physiology ; Signal Transduction ; drug effects ; Tumor Necrosis Factor-alpha ; analysis
6.Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response.
Xiao-qun HAN ; Zuo-jiong GONG ; San-qing XU ; Xun LI ; Li-kun WANG ; Shi-min WU ; Jian-hong WU ; Hua-fen YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):10-17
This study investigated the effect of advanced glycation end products (AGEs) on differentiation of naïve CD4(+) T cells and the role of the receptor of AGEs (RAGE) and peroxisome proliferator-activated receptors (PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin (BSA) with glucose. Human naïve CD4(+) T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin (sh) RNA knock-down experiment, naïve CD4(+) T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-X(TM) 293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4(+) T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T (Treg) cells was determined by a [(3)H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from naïve CD4(+) T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in naïve CD4(+) T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4(+) T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα PPARγ agonist, PGJ2, inhibited the effect of AGEs on naïve CD4(+) T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It was concluded that AGEs may promote CD4(+) T cells development toward pro-inflammatory state, which is associated with increased RAGE mRNA expression and reduced PPARγ activity.
Adult
;
Animals
;
Blotting, Western
;
CD4-Positive T-Lymphocytes
;
drug effects
;
metabolism
;
Cattle
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Glucose
;
pharmacology
;
Glycation End Products, Advanced
;
pharmacology
;
HEK293 Cells
;
Humans
;
Interferon-gamma
;
metabolism
;
Interleukin-17
;
metabolism
;
PPAR gamma
;
agonists
;
genetics
;
metabolism
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
;
RNA Interference
;
Receptor for Advanced Glycation End Products
;
Receptors, Immunologic
;
genetics
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Serum Albumin, Bovine
;
pharmacology
;
T-Lymphocytes, Regulatory
;
drug effects
;
metabolism
;
Th1 Cells
;
drug effects
;
metabolism
;
Th17 Cells
;
drug effects
;
metabolism
7.Effect of HMGB1 on the VEGF-C expression and proliferation of esophageal squamous cancer cells.
Chuan-gui CHEN ; Peng TANG ; Zhen-tao YU
Chinese Journal of Oncology 2012;34(8):566-570
OBJECTIVETo explore the effect of HMGB1 on the VEGF-C expression and proliferation of esophageal squamous cancer cells as well as its possible mechanism.
METHODSA cassette encoding siRNA targeting HMGB1 mediated by rAAV was constructed, the rAAV-siHMGB1-hrGFP, and a vector encoding siRNA mismatching HMGB1 was constructed, the rAAV-miHMGB1-hrGFP. This experiment in vitro included three groups, namely, the blank control group (group A) of KYSE150 cells transfected by rAAV-hrGFP, negative mismatch control group (group B) of KYSE150 cells transfected with rAAV-miHMGB1-hrGFP, and RNA interference group (group C) of KYSE150 cells transfected with rAAV-siHMGB1-hrGFP. We examined the expression of HMGB1 mRNA and protein in the three group cells by real-time PCR and Western blot after 24 h and 48 h, respectively. Then, VEGF-C expression and cell proliferation in the three group cells with or without sRAGE, as an inhibitor of RAGE signal pathway, were assayed by ELISA and MTT after 24 h.
RESULTSThe expression of HMGB1 mRNA and protein in KYSE150 cells in vitro in the group C transfected with rAAV-siHMGB1-hrGFP at the final concentration of 2×10(6) v.g/cell was significantly lower than that of the group A or B after 24 h and 48 h (P < 0.01). The VEGF-C expression of KYSE150 cells was (502.43 ± 13.10) pg/ml in the group C, significantly reduced in comparison with that of the group A (686.40 ± 10.94) pg/ml or group B (682.31 ± 9.61) pg/ml after 24 h (P < 0.05). At the same time, the proliferation of KYSE150 cells in the group C was significantly inhibited compared with that of groups A and B after 24 h (P < 0.01). Moreover, sRAGE at the final concentration of 0.2 µg/ml inhibited the VEGF-C expression and proliferation of KYSE150 cells compared with the corresponding group without sRAGE after 24 h (P < 0.01 or P < 0.05). However, there was no significant difference of the VEGF-C expression and proliferation of KYSE150 cells with sRAGE in the group C compared with that of cells with sRAGE of the group A or group B after 24 h (P > 0.05).
CONCLUSIONSIn esophageal squamous cell carcinoma, HMGB1 can promote the VEGF-C expression and proliferation of the cancer cells through RAGE signal pathway, and HMGB1-RAGE may become a potential target for cell proliferation and lymph node metastasis of this cancer.
Carcinoma, Squamous Cell ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; Dependovirus ; genetics ; Esophageal Neoplasms ; genetics ; metabolism ; pathology ; Gene Expression Regulation, Neoplastic ; Genetic Vectors ; HMGB1 Protein ; biosynthesis ; genetics ; Humans ; RNA Interference ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; metabolism ; Signal Transduction ; Transfection ; Vascular Endothelial Growth Factor C ; metabolism
8.Construction of eukaryotic expression vectors for different domains of the extracellular region of RAGE and their expression in prostate cancer cells.
Jucong LI ; Xianlu SONG ; Bin LU ; Yusheng LI ; Yingqia HONG ; Peng DENG ; Chubiao ZHAO ; Haihua LUO ; Shanchao ZHAO ; Yong JIANG
Journal of Southern Medical University 2012;32(4):507-510
OBJECTIVETo construct eukaryotic expression vectors for different domains (V and VC1) of the extracellular region of the receptor of advanced glycation end products (RAGE) and investigate the roles of these domains in prostate cancer.
METHODSThe coding sequence of V and VC1 domains was amplified from the plasmid pcDNA3-HA-RAGE by PCR and cloned into the pcDNA3-HA vector following routine procedures. After identification by PCR and sequencing, the vectors including V and VC1 domains were transfected into PC-3 cells. Western blotting and immunofluorescence were used to detect the expression and distribution of the expressed products in transfected PC-3 cells.
RESULTSThe expression vectors containing V and VC1 domains of RAGE were successfully constructed as confirmed by PCR and DNA sequence analysis. The V and VC1 domains of RAGE were highly expressed and showed a cytoplasmic distribution in transfected PC-3 cells.
CONCLUSIONThe constructed eukaryotic expression vectors for V and VC1 domains of RAGE can be efficiently expressed in prostate cancer cells.
Cell Line, Tumor ; Cloning, Molecular ; Genetic Vectors ; Humans ; Male ; Plasmids ; Prostatic Neoplasms ; genetics ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; metabolism ; Recombinant Fusion Proteins ; biosynthesis ; genetics ; Sequence Analysis, DNA ; Transfection
9.The effect of valsartan on the expression of the receptor for advanced glycation end products in human glomerular mesangial cells.
Lin-na ZHONG ; Guo-liang HUANG ; Min FENG ; Ying ZHANG
Chinese Journal of Applied Physiology 2011;27(3):338-342
OBJECTIVETo elucidate the effect of valsartan on human glomerular mesangial cells oxidative stress and the expression of the receptor for advanced glycation end products (RAGE) induced by the advanced glycation end-products (AGEs).
METHODSHuman glomerular mesangial cells were treated with advanced glycation end-product-bovine serum albumin (AGE-BSA) in the presence of valsartan. The reactive oxygen species (ROS) in cells were measured by Flow cytometry, and the mRNA of p47 phox, which was the primary subunits of NADPH oxidase, was detected by semi-quantitative reberse transcription polymerase chain reaction (RT-PCR). The mRNA of RAGE was detected by RT-PCR and the RAGE protein was assayed by immunocytochemistry.
RESULTSThe product of ROS, and the expression of p47 phox and RAGE in mesangial cells, which were treated with AGE-BSA in the presence of valsartan, were down-regulated compared with the groups treated with AGE-BSA (P < 0.05). Valsartan dose-dependently and time-dependently inhibited the AGE-elicited overexpression of RAGE, ROS and p47(phox) in mesangial cells.
CONCLUSIONValsartan could inhibit RAGE expression through downregulation of oxidative stress.
Angiotensin II Type 1 Receptor Blockers ; pharmacology ; Antioxidants ; pharmacology ; Glycation End Products, Advanced ; pharmacology ; Humans ; Mesangial Cells ; cytology ; metabolism ; Oxidative Stress ; drug effects ; RNA, Messenger ; genetics ; metabolism ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; genetics ; metabolism ; Serum Albumin, Bovine ; pharmacology ; Tetrazoles ; pharmacology ; Valine ; analogs & derivatives ; pharmacology ; Valsartan
10.Differential expressions of the receptor for advanced glycation end products in prostate cancer and normal prostate.
Bin LU ; Xian-lu SONG ; Li-yong JIA ; Fang-li SONG ; Shan-chao ZHAO ; Yong JIANG
National Journal of Andrology 2010;16(5):405-409
OBJECTIVETo study the differential expressions of the receptor for advanced glycation end products (RAGE) in the tissues of prostate cancer and normal prostate, and to find the role of RAGE in the pathogenesis of prostate cancer.
METHODSWe collected the tissue of prostate cancer and that of normal prostate from the same patient, and compared the differential expressions of RAGE at the tissue, protein and mRNA levels between prostate cancer and normal prostate tissues of 10 patients by immunohistochemistry, Western blot and real-time quantitative PCR.
RESULTSImmunohistochemistry exhibited a significantly higher expression of RAGE in the prostate cancer tissue than in the normal prostate tissue; Western blot showed that the RAGE protein expression was 2.13 times higher in the former than in the latter (P < 0.05); and real-time quantitative PCR revealed the RAGE mRNA expression of the former to be 4.2 times that of the latter (P < 0.05).
CONCLUSIONRAGE may play an important role in the pathogenesis and progression of prostate cancer.
Blotting, Western ; Case-Control Studies ; Humans ; Immunohistochemistry ; Male ; Polymerase Chain Reaction ; methods ; Prostate ; metabolism ; pathology ; Prostatic Neoplasms ; metabolism ; pathology ; RNA, Messenger ; genetics ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; genetics ; metabolism

Result Analysis
Print
Save
E-mail