1.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
2.Observation of the effect of Yanghe Pingchuan granules on the homing of BMSCs in asthma based on FTO regulation of Notch1 pathway.
Kun WANG ; Haoxiang FANG ; Xiaomei CAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):585-592
Objective To observe the effect of m6A methylation regulation on Notch1 pathway on the homing of BMSCs in asthma, and the intervention study of traditional Chinese medicine compound Yanghe Pingchuan Granules. Methods Rat bone mesenchymal stem cells(BMSC)and bronchial epithelial cells were cocultured. The extracted cells were divided into: bronchial epithelial cell group, asthma bronchial epithelial cell+mesenchymal stem cell co-culture group (co-culture group), co-culture cell+normal serum group, coculture cell+serum containing optimal drug group, siRNA FTO+normal serum group, siRNA FTO-NC+normal serum group, and siRNA FTO+serum containing optimal drug group. The vitality and cell cycle changes of co-cultured cells were detected. The level and markers of homing BMSC were detected by immunofluorescence staining. The expression of Notch1 pathway related genes were detected by qRT-PCR. The expression of Notch1 pathway related proteins were detected by Western blot. Results Compared with bronchial epithelial cell group, the co-cultured cell group showed an increase in the homing level of BMSCs and the expression of C-X-C motif chemokine receptor 4 (CXCR4), stromal cell-derived factor 1 (SDF-1), Notch1, transcription factor recombination signal binding protein-J (RBP-J), and hairy enhancer of split 1 (Hes1) proteins. Compared with the co-cultured cell group and co-cultured cell+normal serum group, the co-cultured cell+serum containing optimal drug group showed an increase in the homing level of BMSCs and the expressions of CXCR4 and SDF-1, while the protein and mRNA levels of Notch1 and Hes1 decreased. Compared with the siRNA FTO-NC+normal serum group, the siRNA FTO+normal serum group showed an increase in the levels of Notch1, activated Notch1, RBP-J, Hes1 protein, and cell viability, while the level of homing BMSC decreased. Compared with siRNA FTO+normal serum group, the levels of Notch1, RBP-J mRNA, activated Notch1, and Hes1 protein decreased, while the level of homing BMSCs increased in siRNA FTO+serum containing optimal drug group. The levels of Notch1, RBP-J, and Hes1 mRNA were reduced in the co-cultured cells+serum containing optimal drug group. Compared with siRNA FTO+serum containing optimal drug group, the expressions of Notch1, activated Notch1, RBP-J, Hes1 protein and cell viability decreased, while the level of homing BMSCs increased in the co-cultured cells+serum containing optimal drug group. Conclusion Yanghe Pingchuan Granules may promote the homing of BMSCs in asthma and alleviate asthma inflammation by upregulating the expression of FTO and inhibiting the expression of downstream genes in the Notch1 signaling pathway.
Animals
;
Receptor, Notch1/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Asthma/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Rats
;
Coculture Techniques
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Epithelial Cells/metabolism*
;
Rats, Sprague-Dawley
;
Cells, Cultured
;
Male
3.Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells.
Hui-Yu ZHANG ; Gao-Jie XIN ; Yuan-Yuan CHEN ; Ce CAO ; Xiao-Shan CUI ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2024;49(23):6450-6458
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury. The lactate dehydrogenase(LDH) content in cell culture medium supernatant was detected by using an LDH assay kit, and autophagosome in cells was observed by transmission electron microscopy. The level of autophagy in cells was detected through the mono-dansyl-cadaverine(MDC) detection method. Fluorescence quantitative polymerase chain reaction was used to detect the mRNA levels of miR-155, Notch1, Hes1, and microtubule-associated protein1 light chain 3(LC3), and Western blot was used to detect the protein expression levels of Notch1, Hes1, LC3Ⅰ, and LC3Ⅱ. The results show that after H/R injury, the activity of HL-1 cells decreases, and LDH leakage increases. Besides, the number of intracellular autophagosomes increases, and the mRNA level of LC3 and the LC3Ⅱ/LC3Ⅰ ratio are elevated. In addition, ginsenoside Rg_1 can increase cell activity, decrease LDH leakage and the number of intracellular autophagosomes, and reduce the mRNA level of LC3 and the LC3Ⅱ/LC3Ⅰ ratio. Therefore, it plays a cardioprotective role by inhibiting autophagy, and Notch1 inhibitor or miR-155 overexpression can inhibit the effect of ginsenoside Rg_1, promote autophagy, and aggravate H/R injury in HL-1 cells. Ginsenoside Rg_1 can inhibit the reduction of Notch1 and Hes1 mRNA levels and protein expressions and the increase in miR-155 mRNA levels caused by H/R injury, while Notch1 inhibitors or miR-155 overexpression show the opposite effect. In summary, ginsenoside Rg_1 can regulate autophagy through the miR-155/Notch1/Hes1 pathway to alleviate H/R injury in HL-1 cardiomyocytes.
Ginsenosides/pharmacology*
;
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Receptor, Notch1/genetics*
;
Transcription Factor HES-1/genetics*
;
Mice
;
Animals
;
Cell Line
;
Signal Transduction/drug effects*
;
Myocytes, Cardiac/cytology*
;
Cell Hypoxia/drug effects*
4.Clinical characteristics and prognosis of children with T-lineage acute lymphoblastic leukemia: a single-center study.
Xiao-Yan CHEN ; Jia-Yi WANG ; Hua JIANG ; Wei-Na ZHANG
Chinese Journal of Contemporary Pediatrics 2024;26(12):1308-1314
OBJECTIVES:
To study the clinical characteristics and prognosis of T-lineage acute lymphoblastic leukemia (T-ALL) and related prognostic factors.
METHODS:
A retrospective analysis was conducted on the children with T-ALL who were treated with the Chinese Children's Cancer Group Acute Lymphoblastic Leukemia (CCCG-ALL) regimen in Guangzhou Women and Children's Medical Center between April 2015 and December 2022.
RESULTS:
A total of 80 children were included, with a median age of 7 years and 3 months and a male/female ratio of 6:1. Among these children, the children with mediastinal mass accounted for 20% (16/80), those with central nervous system leukemia accounted for 4% (3/80), and those with testicular leukemia accounted for 1% (1/69). SIL/TAL1 was the most common fusion gene (22%, 18/80), and NOTCH1 was the most common mutation gene (69%, 37/54). The median follow-up time was 52 months, with a 5-year overall survival (OS) rate of 87.3%±4.0% and a 5-year event-free survival rate of 84.0%±4.3%. The non-central nervous system-1 group had a significantly lower 5-year OS rate than the central nervous system-1 group (66.7%±16.1% vs 90.3%±3.8%; P<0.05), and the group with minimal residual disease (MRD) ≥0.01% on day 46 of induction therapy had a significantly lower 5-year OS rate than the group with MRD <0.01% (68.6%±13.5% vs 94.8%±3.0%; P<0.05).
CONCLUSIONS
Children treated with the CCCG-ALL regimen tend to have a good treatment outcome. Non-central nervous system-1 status and MRD ≥0.01% on day 46 of induction therapy are associated with the poor prognosis in these children.
Humans
;
Male
;
Female
;
Child
;
Prognosis
;
Child, Preschool
;
Retrospective Studies
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Infant
;
Adolescent
;
Receptor, Notch1/genetics*
;
Mutation
;
Oncogene Proteins, Fusion/genetics*
;
Survival Rate
5.MiR-139-5p regulates the Notch/RBP-J/Hes1 axis to promote homing of bone mesenchymal stem cells in bronchial asthma.
Kun WANG ; Haoxiang FANG ; Xiaomei CAO ; Ziheng ZHU
Journal of Southern Medical University 2024;44(12):2283-2290
OBJECTIVES:
To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.
METHODS:
Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining. The changes of BMSC homing after the transfection were observed, and the expressions of Notch1, RBP-J, and Hes1 mRNAs and proteins and Th1/Th2 cytokines were detected with RT-qPCR, Western blotting or ELISA.
RESULTS:
The co-cultures of BMSCs and asthmatic bronchial epithelial cells showed significantly decreased expressions of miR-139-5p, IL-2 and IL-12 and increased expressions of CXCR4, SDF-1, IL-5, IL-9, Notch1, RBP-J, and Hes1. Transfection with miR-139-5p mimics significantly increased the expressions of miR-139-5p, IL-2, CXCR4 and SDF-1 and lowered the expression levels of IL-5, IL-9, Notch1, activated Notch1, and Hes1 in the co-cultured cells. Correlation analysis showed that BMSC homing was positively correlated with miR-139-5p and IL-12 and negatively correlated with IL-5 expression. The expression of CXCR4 was negatively correlated with activated Notch1, and SDF-1 was positively correlated with miR-139-5p but negatively correlated with Notch1 expression.
CONCLUSIONS
High expression of miR-139-5p promotes homing of BMSCs in asthma by targeting the Notch1 signaling pathway to regulate the expressions of Th1/Th2 cytokines, thereby alleviating airway inflammation.
Asthma/genetics*
;
Animals
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/metabolism*
;
Rats
;
Transcription Factor HES-1/genetics*
;
Signal Transduction
;
Receptor, Notch1/genetics*
;
Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics*
;
Receptors, CXCR4/genetics*
;
Coculture Techniques
;
Rats, Sprague-Dawley
;
Chemokine CXCL12/genetics*
;
Epithelial Cells/metabolism*
6.Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 signaling.
Yuan HE ; Xiao-Xuan QIN ; Ming-Wei LIU ; Wei SUN
Journal of Integrative Medicine 2024;22(6):683-695
OBJECTIVE:
Atherosclerotic cardiovascular disease poses a significant health challenge globally. Recent findings highlight the pivotal role of the endothelial-to-mesenchymal transition (EndMT) in atherosclerosis. Morin is a bioflavonoid mainly extracted from white mulberry, a traditional Chinese herbal medicine with anti-inflammatory and antioxidant properties. This study examines whether morin can alleviate atherosclerosis by suppressing EndMT and seeks to elucidate the underlying mechanism.
METHODS:
We induced an in vitro EndMT model in human umbilical vein endothelial cells (HUVECs) by stimulating the cells with transforming growth factor-β1 (TGF-β1) (10 ng/mL) for 48 h. The in vivo experiments were performed in an atherosclerosis model using apolipoprotein E (ApoE)-/- mice fed with a high-fat diet (HFD). Mice in the intervention group were given morin (50 mg/kg) orally for 4 weeks. Molecular docking and microscale thermophoresis were assayed to understand the interactions between morin and matrix metalloproteinase-9 (MMP-9).
RESULTS:
Morin inhibited the expression of EndMT markers in a dose-dependent manner in TGF-β1-treated HUVECs. Administering 50 μmol/L morin suppressed the upregulation of MMP-9 and Notch-1 signaling in TGF-β1-induced EndMT. Moreover, the overexpression of MMP-9 activated Notch-1 signaling, thereby reversing morin's inhibitory effect on EndMT. In the HFD-induced atherosclerotic ApoE-/- mice, morin notably reduced aortic intimal hyperplasia and plaque formation by suppressing EndMT. Furthermore, morin demonstrated a strong binding affinity for MMP-9.
CONCLUSION
Morin acts as an MMP-9 inhibitor to disrupt EndMT in atherosclerosis by limiting the activation of Notch-1 signaling. This study underscores morin's potential utility in the development of anti-atherosclerotic medication. Please cite this article as: He Y, Qin XX, Liu MW, Sun W. Morin, a matrix metalloproteinase 9 inhibitor, attenuates endothelial-to-mesenchymal transition in atherosclerosis by downregulating Notch-1 Signaling. J Integr Med. 2024; 22(6): 684-696.
Flavonoids/pharmacology*
;
Animals
;
Atherosclerosis/metabolism*
;
Humans
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Matrix Metalloproteinase 9/genetics*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Mice
;
Epithelial-Mesenchymal Transition/drug effects*
;
Down-Regulation/drug effects*
;
Male
;
Transforming Growth Factor beta1/genetics*
;
Matrix Metalloproteinase Inhibitors/pharmacology*
;
Mice, Inbred C57BL
;
Flavones
7.Forkhead Box M1 Regulates the Proliferation,Invasion,and Drug Resistance of Gastric Cancer Cells via circ_NOTCH1.
Ning GE ; Yuan-Yuan JIANG ; Zhong-Ping PAN ; Jie WAN
Acta Academiae Medicinae Sinicae 2023;45(5):713-720
Objective To investigate the impacts of forkhead box M1(FOXM1)on the proliferation,invasion,and drug resistance of gastric cancer cells by regulating the circular RNA circ_NOTCH1.Methods Western blotting and real-time quantitative PCR were performed to determine the expression of FOXM1 protein and circ_NOTCH1,respectively,in the gastric cancer tissue,para-carcinoma tissue,human normal gastric mucosa epithelial cell line GES-1 and gastric cancer cell lines MGC-803,HGC-27,and BGC-823.BGC-823 cells were classified into the following groups:control,short hairpin RNA FOXM1(sh-FOXM1)and negative control(sh-NC),small interfering RNA circ_NOTCH1(si-circ_NOTCH1)and negative control(si-NC),and sh-FOXM1+circ_NOTCH1 overexpression plasmid(sh-FOXM1+pcDNA-circ_NOTCH1)and sh-FOXM1+negative control(sh-FOXM1+pcDNA).CCK-8 assay and clone formation assay were employed to measure the cell proliferation,and Transwell assay to measure cell invasion.After treatment with 1.0 mg/L adriamycin for 48 h,the cell resistance in each group was analyzed.Western blotting was employed to determine the expression levels of FOXM1,proliferating cell nuclear antigen(PCNA),Bax,multi-drug resistance-associated protein 1(MRP1),and multi-drug resistance gene 1(MDR1).RNA pull-down and RNA immunoprecipitation were employed to examine the binding of circ_NOTCH1 to FOXM1 protein.Results Compared with those in the para-carcinoma tissue,the expression levels of FOXM1 protein and circ_NOTCH1 in the gastric cancer tissue were up-regulated(all P<0.001).Compared with GES-1 cells,MGC-803,HGC-27,and BGC-823 cells showed up-regulated expression levels of FOXM1 protein and circ_NOTCH1(all P<0.001).Compared with the control group and sh-NC group,the sh-FOXM1 group with down-regulated expression of FOXM1 protein and circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with the control group and the si-NC group,the si-circ_NOTCH1 group with down-regulated expression of circ_NOTCH1 showed decreased optical density value,clone formation rate,cell invasion number,and cell viability,down-regulated expression of PCNA,MRP1,and MDR1,and up-regulated expression of Bax protein in BGC-823 cells(all P<0.001).Compared with sh-FOXM1 group and sh-FOXM1+pcDNA group,the sh-FOXM1+pcDNA-circ_NOTCH1 group with up-regulated expression of circ_NOTCH1 showed increased optical density value,clone formation rate,cell invasion number,and cell viability,up-regulated expression of PCNA,MRP1,and MDR1,and down-regulated expression of Bax protein(all P<0.001).FOXM1 protein was able to interact with circ_NOTCH1.Conclusion Interference with FOXM1 may inhibit the proliferation,invasion,and drug resistance of gastric cancer cells by silencing circ_NOTCH1 expression.
Humans
;
bcl-2-Associated X Protein/metabolism*
;
Carcinoma
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Drug Resistance
;
Forkhead Box Protein M1/metabolism*
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/genetics*
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Receptor, Notch1/metabolism*
;
RNA, Small Interfering/genetics*
;
Stomach Neoplasms/genetics*
8.Mechanism of the Notch1 signaling pathway regulating osteogenic factor influences lumbar disc calcification.
China Journal of Orthopaedics and Traumatology 2023;36(5):473-479
OBJECTIVE:
To explore the mechanism of the Notch1 signaling pathway in regulating osteogenic factors and influencing lumbar disc calcification.
METHODS:
Primary annulus fibroblasts from SD rats were isolated and subcultured in vitro. The calcification-inducing factors bone morphogenetic protein-2 (BMP-2) and basic fibroblast growth factor (b-FGF) were added to separate groups to induce calcification, which were referred to as the BMP-2 group and the b-FGF group, respectively. A control group was also set up, which was cultured in normal medium. Subsequently, cell morphology and fluorescence identification, alizarin red staining, ELISA, and quantitative real-time polymerase chain reaction (QRT-PCR) were performed to determine the effect of calcification induction. Cell grouping was performed again, including the control group, the calcification group (adding the inducer BMP-2), the calcification + LPS group(adding the inducer BMP-2 and the Notch1 pathway activator LPS), and the calcification + DAPT group (adding the inducer BMP-2 and the Notch1 pathway inhibitor DAPT). Alizarin red staining and flow cytometry were used to detect cell apoptosis, ELISA was used to detect the content of osteogenic factors, and Western blot was used to detect the expression of BMP-2, b-FGF, and Notch1 proteins.
RESULTS:
The induction factor screening results showed that the number of mineralized nodules in fibroannulus cells in BMP-2 group and b-FGF group was significantly increased, and the increase was greater in the BMP-2 group Meanwhile, ELISA and Western blot results showed that BMP-2, b-FGF and mRNA expression levels of BMP-2, b-FGF and Notch1 in the induced group were significantly increased (P<0.01). The results of the mechanism of Notch1 signaling pathway affecting lumbar disc calcification showed that compared to calcified group, the number of fibroannulus cell mineralization nodules, apoptosis rate, BMP-2, b-FGF content, the expression levels of BMP-2, b-FGF, and Notch1 proteins were further increased significantly However, the number of mineralization nodules, apoptosis rate, BMP-2 and b-FGF levels, BMP-2, b-FGF and Notch1 protein expression levels were decreased in the calcified +DAPT group (P<0.05 or P<0.01).
CONCLUSION
Notch1 signaling pathway promotes lumbar disc calcification through positive regulation of osteogenic factors.
Animals
;
Rats
;
Bone Morphogenetic Protein 2/metabolism*
;
Calcinosis
;
Cell Differentiation
;
Cells, Cultured
;
Lipopolysaccharides
;
Osteogenesis
;
Rats, Sprague-Dawley
;
Receptor, Notch1/genetics*
;
Signal Transduction
9.Effect of Notch1 on extracellular matrix deposition in the renal tubulointerstitium of diabetes.
Xing-Mei LIU ; Yan SHEN ; Yu HE ; Xiao-Xia BAN ; Hong-Jun JIN ; Xiao-Lan HE ; He TIAN
Acta Physiologica Sinica 2022;74(3):392-400
The aim of the present study was to observe the effects of Notch1 and autophagy on extracellular matrix deposition in renal tubulointerstitium of diabetes and to explore the mechanism. The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice). After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. Rat renal tubular epithelial cells NRK52E were cultured under normal glucose (NG) and high glucose (HG) respectively, and the expression of Notch1 and LC3 proteins were detected by Western blotting. Autophagosomes in NRK52E cells with overexpressed and knockdown Notch1 under NG and HG conditions were observed by confocal microscope, and the expression changes of Notch1, Collagen-I and III protein were detected by immunofluorescence. The results showed that the Notch1 and Collagen-III expressions were increased (P < 0.01) and the LC3 expression was decreased (P < 0.05) in db/db mice compared with db/m mice. In vitro, the Notch1 was increased (P < 0.01) and the LC3 expression was decreased significantly (P < 0.01) in NRK52E cells of HG group compared with NG group. There was no significant change of Notch1 and LC3 expression between the mannitol (MA) group and the NG group. Autophagy was decreased and extracellular matrix deposition was aggravated when Notch1 was overexpressed. In contrast, autophagy was increased and extracellular matrix deposition was relieved by knockdown of Notch1 under HG conditions. In conclusion, Notch1 protein expression was increased and autophagy was reduced in renal tissue of diabetes and renal tubular epithelial cells under HG. The extracellular matrix deposition in the renal tubulointerstitium was relieved by regulating autophagy after the knockdown of Notch1.
Animals
;
Autophagy/physiology*
;
Diabetes Mellitus
;
Extracellular Matrix
;
Glucose/pharmacology*
;
Kidney
;
Mice
;
Rats
;
Receptor, Notch1/genetics*
10.Gene Mutation in Acute Lymphoblastic Leukemia by DNA Sequencing.
Ru-Yue ZHENG ; Shu-Juan WANG ; Chong WANG ; Tao LI ; Lin-Xiao LIAO ; Meng-Lin LI ; Sheng-Mei CHEN ; Rong GUO ; Wei-Qiong WANG ; Yu ZHANG ; Yi FAN ; Ding-Ming WAN ; Yan-Fang LIU
Journal of Experimental Hematology 2020;28(6):1791-1795
OBJECTIVE:
To analyze the characteristics of gene mutation in adult ALL and its clinical significance.
METHODS:
Clinical data of 134 primary adult ALL patients and DNA sequencing results of 16 kinds of gene mutation were collected. The characteristic of gene mutation and clinical significances were statistically analyzed.
RESULTS:
In 31 cases of 134 ALL cases (23.13%) the gene mutations were detected as follows: 19 cases of 114 B-ALL cases (16.67%), 11 cases of 19 T-ALL cases (57.89%) and 1 case of T/B-ALL. The incidence of T-ALL gene mutation was significantly higher than that of B-ALL (χ
CONCLUSION
There may be multiple gene mutations in adult ALL patients. IL7R and NOTCH1 are the most common gene mutations and NOTCH1 mutation may indicate poor prognosis. Detection of gene mutations is helpful to understand the pathogenesis of ALL and evaluate the prognosis of adult ALL patients.
Adult
;
Humans
;
Mutation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Prognosis
;
Receptor, Notch1/genetics*
;
Sequence Analysis, DNA

Result Analysis
Print
Save
E-mail