1.Comparative of Forensic DNA Identification Using Cell Lysis Method and Magnetic Beads Method.
Jia-Jun SHI ; Dan WU ; Tie-Zhu LIU ; Si-Jing HAO ; Bi-Cheng MENG ; Shi-Lin LI ; Ya-Nan LIU
Journal of Forensic Medicine 2023;39(1):45-49
OBJECTIVES:
To compare the effects of cell lysis method and magnetic beads method in forensic DNA identification and to explore these two methods in forensic DNA identification.
METHODS:
The genome DNA of THP-1 cells in different quantities was extracted by the cell lysis method and magnetic beads method, and the DNA content was quantified by real-time quantitative PCR. The cell lysis method and magnetic beads method were used to type the STR of human blood with different dilution ratios.
RESULTS:
When the numbers of THP-1 cell were 100, 400 and 800, the DNA content extracted by cell lysis method were (1.219±0.334), (5.081±0.335), (9.332±0.318) ng, respectively; and the DNA content extracted by magnetic beads method were (1.020±0.281), (3.634±0.482), (7.896±0.759) ng, respectively. When the numbers of THP-1 cells were 400 and 800, the DNA content extracted by the cell lysis method was higher than that by the magnetic beads method. The sensitivity of cell lysis method and magnetic beads method was similar in STR typing of human blood at different dilution ratios. Complete STR typing could be obtained at 100, 300 and 500-fold dilutions of blood samples, but could not be detected at 700-fold dilution. STR typing of undiluted human blood could not be detected by cell lysis method.
CONCLUSIONS
The cell lysis method is easy to operate and can retain template DNA to the maximum extend. It is expected to be suitable for trace blood evidence tests.
Humans
;
Forensic Medicine
;
DNA/genetics*
;
Real-Time Polymerase Chain Reaction
;
Magnetic Phenomena
;
DNA Fingerprinting/methods*
;
Microsatellite Repeats
2.Establishment and preliminary application of quantitative real-time PCR assay for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA.
Xiao Juan ZHU ; Yin CHEN ; Bin WU ; Yi Yue GE ; Tao WU ; Qiao QIAO ; Kang Chen ZHAO ; Lun Biao CUI
Chinese Journal of Preventive Medicine 2023;57(2):268-272
Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/diagnosis*
;
Subgenomic RNA
;
Real-Time Polymerase Chain Reaction/methods*
;
RNA, Viral/genetics*
;
Sensitivity and Specificity
;
Nucleocapsid/chemistry*
;
COVID-19 Testing
3.Screening of housekeeping genes in Gelsemium elegans and expression patterns of genes involved in its alkaloid biosynthesis.
Yao ZHANG ; Detian MU ; Yu ZHOU ; Ying LU ; Yisong LIU ; Mengting ZUO ; Zhuang DONG ; Zhaoying LIU ; Qi TANG
Chinese Journal of Biotechnology 2023;39(1):286-303
Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.
Genes, Essential
;
Gelsemium/genetics*
;
Peptide Elongation Factor 1/genetics*
;
Transcriptome
;
Gene Expression Profiling/methods*
;
Alkaloids
;
Real-Time Polymerase Chain Reaction/methods*
;
Reference Standards
4.Selection and validation of reference genes for quantitative real-time PCR analysis in Paeonia veitchii.
Meng-Ting LUO ; Jun-Zhang QUBIE ; Ming-Kang FENG ; A-Xiang QUBIE ; Bin HE ; Yue-Bu HAILAI ; Wen-Bing LI ; Zheng-Ming YANG ; Ying LI ; Xin-Jia YAN ; Yuan LIU ; Shao-Shan ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5759-5766
Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.
Real-Time Polymerase Chain Reaction/methods*
;
Paeonia/genetics*
;
Actins/genetics*
;
Reproducibility of Results
;
Transcriptome
;
Glyceraldehyde-3-Phosphate Dehydrogenases/genetics*
;
Reference Standards
;
Gene Expression Profiling/methods*
5.Single-copy Loss of Rho Guanine Nucleotide Exchange Factor 10 ( arhgef10) Causes Locomotor Abnormalities in Zebrafish Larvae.
Yi ZHANG ; Ming Xing AN ; Chen GONG ; Yang Yang LI ; Yu Tong WANG ; Meng LIN ; Rong LI ; Chan TIAN
Biomedical and Environmental Sciences 2022;35(1):35-44
OBJECTIVE:
To determine if ARHGEF10 has a haploinsufficient effect and provide evidence to evaluate the severity, if any, during prenatal consultation.
METHODS:
Zebrafish was used as a model for generating mutant. The pattern of arhgef10 expression in the early stages of zebrafish development was observed using whole-mount in situ hybridization (WISH). CRISPR/Cas9 was applied to generate a zebrafish model with a single-copy or homozygous arhgef10 deletion. Activity and light/dark tests were performed in arhgef10 -/-, arhgef10 +/-, and wild-type zebrafish larvae. ARHGEF10 was knocked down using small interferon RNA (siRNA) in the SH-SY5Y cell line, and cell proliferation and apoptosis were determined using the CCK-8 assay and Annexin V/PI staining, respectively.
RESULTS:
WISH showed that during zebrafish embryonic development arhgef10 was expressed in the midbrain and hindbrain at 36-72 h post-fertilization (hpf) and in the hemopoietic system at 36-48 hpf. The zebrafish larvae with single-copy and homozygous arhgef10 deletions had lower exercise capacity and poorer responses to environmental changes compared to wild-type zebrafish larvae. Moreover, arhgef10 -/- zebrafish had more severe symptoms than arhgef10 +/- zebrafish. Knockdown of ARHGEF10 in human neuroblastoma cells led to decreased cell proliferation and increased cell apoptosis.
CONCLUSION
Based on our findings, ARHGEF10 appeared to have a haploinsufficiency effect.
Animals
;
Annexin A5
;
Apoptosis
;
Blotting, Western
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Flow Cytometry
;
Genotype
;
Humans
;
In Situ Hybridization
;
Larva/physiology*
;
Phenotype
;
RNA/isolation & purification*
;
Real-Time Polymerase Chain Reaction/standards*
;
Rho Guanine Nucleotide Exchange Factors/metabolism*
;
Sincalide/analysis*
;
Spectrophotometry/methods*
;
Zebrafish/physiology*
6.Application of Duplex Droplet Digital PCR Detection of miR-888 and miR-891a in Semen Identification.
Sun-Xiang WEI ; Hui-Xiang CHEN ; Sheng HU ; Yi-Xia ZHAO ; Hui-Xia SHI ; Zhe WANG ; Wen LI ; An-Quan JI ; Qi-Fan SUN
Journal of Forensic Medicine 2022;38(6):719-725
OBJECTIVES:
To establish a system for simultaneous detection of miR-888 and miR-891a by droplet digital PCR (ddPCR), and to evaluate its application value in semen identification.
METHODS:
The hydrolysis probes with different fluorescence modified reporter groups were designed to realize the detection of miR-888 and miR-891a by duplex ddPCR. A total of 75 samples of 5 body fluids (including peripheral blood, menstrual blood, semen, saliva and vaginal secretion) were detected. The difference analysis was conducted by Mann-Whitney U test. The semen differentiation ability of miR-888 and miR-891a was evaluated by ROC curve analysis and the optimal cut-off value was obtained.
RESULTS:
There was no significant difference between the dual-plex assay and the single assay in this system. The detection sensitivity was up to 0.1 ng total RNA, and the intra- and inter-batch coefficients of variation were less than 15%. The expression levels of miR-888 and miR-891a detected by duplex ddPCR in semen were both higher than those in other body fluids. ROC curve analysis showed that the AUC of miR-888 was 0.976, the optimal cut-off value was 2.250 copies/μL, and the discrimination accuracy was 97.33%; the AUC of miR-891a was 1.000, the optimal cut-off value was 1.100 copies/μL, and the discrimination accuracy was 100%.
CONCLUSIONS
In this study, a method for detection of miR-888 and miR-891a by duplex ddPCR was successfully established. The system has good stability and repeatability and can be used for semen identification. Both miR-888 and miR-891a have high ability to identify semen, and the discrimination accuracy of miR-891a is higher.
Female
;
Humans
;
Body Fluids/chemistry*
;
MicroRNAs/analysis*
;
Real-Time Polymerase Chain Reaction/methods*
;
Saliva/chemistry*
;
Semen/chemistry*
;
Male
7.In silico assessment of the impact of 2019 novel coronavirus genomic variation on the efficiency of published real-time quantitative polymerase chain reaction detection assays.
Hang FAN ; Xiang-Li-Lan ZHANG ; Ya-Wei ZHANG ; Yong HUANG ; Yue TENG ; Yan GUO ; Zhi-Qiang MI ; Rui-Fu YANG ; Ya-Jun SONG ; Yu-Jun CUI
Chinese Medical Journal 2020;133(13):1612-1613
8.Establishment of a T(m)-shift Method for Detection of Cat-Derived Hookworms
Yeqi FU ; Yunqiu LIU ; Asmaa M I ABUZEID ; Yue HUANG ; Xue ZHOU ; Long HE ; Qi ZHAO ; Xiu LI ; Jumei LIU ; Rongkun RAN ; Guoqing LI
The Korean Journal of Parasitology 2019;57(1):9-15
Melting temperature shift (T(m)-shift) is a new detection method that analyze the melting curve on real-time PCR thermocycler using SYBR Green I fluorescent dye. To establish a T(m)-shift method for the detection of Ancylostoma ceylanicum and A. tubaeforme in cats, specific primers, with GC tail of unequal length attached to their 5′ end, were designed based on 2 SNP loci (ITS101 and ITS296) of the internal transcribed spacer 1 (ITS1) sequences. The standard curve of T(m)-shift was established using the standard plasmids of A. ceylanicum (AceP) and A. tubaeforme (AtuP). The T(m)-shift method stability, sensitivity, and accuracy were tested with reference to the standard curve, and clinical fecal samples were also examined. The results demonstrated that the 2 sets of primers based on the 2 SNPs could accurately distinguish between A. ceylanicum and A. tubaeforme. The coefficient of variation (CV) of T(m)-values of AceP and AtuP was 0.07% and 0.06% in ITS101 and was 0.06% and 0.08% in ITS296, respectively. The minimum detectable DNA concentration was 5.22×10⁻⁶ and 5.28×10⁻⁶ ng/μl samples of AceP and AtuP, respectively. The accuracy of T(m)-shift method reached 100% based on examination of 10 hookworm DNA samples with known species. In the clinical detection of hookworm in 69 stray cat fecal sample, the T(m)-shift detection results were consistent with the microscopic examination and successfully differentiated between the 2-hookworm species. In conclusion, the developed method is a rapid, sensitive and accurate technique and can provide a promising tool for clinical detection and epidemiological investigation of cat-derived hookworms.
Ancylostoma
;
Ancylostomatoidea
;
Animals
;
Cats
;
DNA
;
Freezing
;
Methods
;
Plasmids
;
Polymorphism, Single Nucleotide
;
Real-Time Polymerase Chain Reaction
;
Tail
9.MicroRNA-362 Inhibits Cell Proliferation and Invasion by Directly Targeting SIX1 in Colorectal Cancer
Jin'e WAN ; Jian YANG ; Cuixia QIAO ; Xiaomei SUN ; Aiting DI ; Lize ZHANG ; Dandan WANG ; Gang ZHAO
Yonsei Medical Journal 2019;60(5):414-422
PURPOSE: Colorectal cancer (CRC) is the third most common cancer in China and poses high morbidity and mortality. In recent years, increasing evidence has indicated that microRNAs played important functions in the occurrence and development of tumors. The purpose of this study was to identify the biological mechanisms of miR-362 in CRC. MATERIALS AND METHODS: Quantitative real-time PCR was carried out to assess the expression of miR-362 and SIX1. The Kaplan-Meier method was employed to evaluate the 5-year overall survival of CRC patients. The proliferative and invasive abilities of CRC cells were assessed by MTT and transwell assays. RESULTS: miR-362 was significantly decreased in CRC tissues and cell lines, compared to the normal tissues and normal cells. A significant connection was confirmed between the overall survival of 53 CRC patients and low expression of miR-362. Downregulation of miR-362 inhibited the proliferation and invasion through binding to the 3′-UTR of SIX1 mRNA in CRC. Additionally, we discovered that SIX1 was a direct target gene of miR-362 and that the expression of miR-362 had a negative connection with SIX1 expression in CRC. SIX1 could reverse partial functions in the proliferation and invasion in CRC cells. CONCLUSION: miR-362 may be a prognostic marker in CRC and suppress CRC cell proliferation and invasion in part through targeting the 3′-UTR of SIX1 mRNA. The newly identified miR-362/SIX1 axis provides insight into the progression of CRC.
Cell Line
;
Cell Proliferation
;
China
;
Colorectal Neoplasms
;
Down-Regulation
;
Humans
;
Methods
;
MicroRNAs
;
Mortality
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
10.An Enzymolysis-Assisted Agrobacterium tumefaciens-Mediated Transformation Method for the Yeast-Like Cells of Tremella fuciformis
Yuanyuan WANG ; Danyun XU ; Xueyan SUN ; Lisheng ZHENG ; Liguo CHEN ; Aimin MA
Mycobiology 2019;47(1):59-65
Agrobacterium tumefaciens-mediated transformation (ATMT), as a simple and versatile method, achieves successful transformation in the yeast-like cells (YLCs) of Tremella fuciformis with lower efficiency. Establishment of a more efficient transformation system of YLCs is important for functional genomics research and biotechnological application. In this study, an enzymolysis-assisted ATMT method was developed. The degradation degree of YLCs depends on the concentration and digestion time of Lywallzyme. Lower concentration (≤0.1%) of Lywallzyme was capable of formation of limited wounds on the surface of YLCs and has less influence on their growth. In addition, there is no significant difference of YLCs growth among groups treated with 0.1% Lywallzyme for different time. The binary vector pGEH under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter was utilized to transform the enzymolytic wounded YLCs with different concentrations and digestion time. The results of PCR, Southern blot, quantitative real-time PCR (qRT-PCR) and fluorescence microscopy revealed that the T-DNA was integrated into the YLCs genome, suggesting an efficient enzymolysis-assisted ATMT method of YLCs was established. The highest transformation frequency reached 1200 transformants per 106 YLCs by 0.05% (w/v) Lywallzyme digestion for 15 min, and the transformants were genetically stable. Compared with the mechanical wounding methods, enzymolytic wounding is thought to be a tender, safer and more effective method.
Agrobacterium
;
Blotting, Southern
;
Digestion
;
Genome
;
Genomics
;
Methods
;
Microscopy, Fluorescence
;
Oxidoreductases
;
Polymerase Chain Reaction
;
Real-Time Polymerase Chain Reaction
;
Wounds and Injuries

Result Analysis
Print
Save
E-mail