1.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
2.Acute hypoxia blunts cold sensitivity through the inhibition of the lateral parabrachial nucleus in rats.
Ze-Jun WANG ; Tian YANG ; Qing-Yuan HUANG
Acta Physiologica Sinica 2023;75(3):351-359
To explore the changes of cold sensitivity after exposure to acute hypoxia and its mechanisms, Sprague-Dawley rats were divided into normoxia control group (21% O2, 25 °C), 10% O2 hypoxia group (10% O2, 25 °C), 7% O2 hypoxia group (7% O2, 25 °C), normoxia cold group (21% O2, 10 °C) and hypoxia cold group (7% O2, 10 °C). Cold foot withdrawal latency and preference temperature of each group were measured, skin temperatures were estimated using an infrared thermographic imaging camera, body core temperature was recorded by wireless telemetry system, immunohistochemical staining was used to detect the expression of c-Fos in the lateral parabrachial nucleus (LPB). The results showed that acute hypoxia significantly prolonged the latency of cold foot withdrawal and significantly enhanced the intensity of cold stimulation for foot withdrawal, and the rats under hypoxia preferred cold temperature. Cold exposure (10 °C) for 1 h significantly enhanced the expression of c-Fos in LPB of rats in normoxia, while hypoxia inhibited cold-induced c-Fos expression. Acute hypoxia significantly increased the skin temperature of feet and tails, decreased the skin temperature of interscapular region, and decreased the body core temperature of rats. These results indicate that acute hypoxia can significantly blunt cold sensitivity through the inhibition of LPB, suggesting actively keeping warm measures should be taken at the early stage after ascent to high altitude to prevent the upper respiratory infection and acute mountain sickness.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Parabrachial Nucleus/physiology*
;
Temperature
;
Cold Temperature
;
Hypoxia
;
Proto-Oncogene Proteins c-fos
3.Effect of folic acid coated-crosslinked urethane-doped polyester elastomer nerve conduit on promoting the repair of long distance peripheral nerve injury in rats.
Weibo KANG ; Jiazhi YAN ; Yongjie CHEN ; Chenxi LI ; Dacheng SANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(5):622-628
OBJECTIVE:
To investigate the effect of folic acid coated-crosslinked urethane-doped polyester elastomer (fCUPE) nerve conduit in repairing long distance peripheral nerve injury.
METHODS:
Thirty-six 3-month-old male Sprague Dawley rats weighing 180-220 g were randomly assigned to 3 groups, each consisting of 12 rats: CUPE nerve conduit transplantation group (group A), fCUPE nerve conduit transplantation group (group B), and autologous nerve transplantation group (group C), the contralateral healthy limb of group C served as the control group (group D). A 20-mm-long sciatic nerve defect model was established in rats, and corresponding materials were used to repair the nerve defect according to the group. The sciatic function index (SFI) of groups A-C was calculated using the Bain formula at 1, 2, and 3 months after operation. The nerve conduction velocity (NCV) of the affected side in groups A-D was assessed using neuroelectrophysiological techniques. At 3 months after operation, the regenerated nerve tissue was collected from groups A-C for S-100 immunohistochemical staining and Schwann cell count in groups A and B to compare the level of nerve repair and regeneration in each group.
RESULTS:
At 3 months after operation, the nerve conduits in all groups partially degraded. There was no significant adhesion between the nerve and the conduit and the surrounding tissues, the conduit was well connected with the distal and proximal nerves, and the nerve-like tissues in the conduit could be observed when the nerve conduit stents were cut off. SFI in group A was significantly higher than that in group C at each time point after operation and was significantly higher than that in group B at 2 and 3 months after operation ( P<0.05). There was no significant difference in SFI between groups B and C at each time point after operation ( P>0.05). NCV in group A was significantly slower than that in the other 3 groups at each time point after operation ( P<0.05). The NCV of groups B and C were slower than that of group D, but the difference was significant only at 1 month after operation ( P<0.05). There was no significant difference between groups B and C at each time point after operation ( P>0.05). Immunohistochemical staining showed that the nerve tissue of group A had an abnormal cavo-like structure, light tissue staining, and many non-Schwann cells. In group B, a large quantity of normal neural structures was observed, the staining was deeper than that in group A, and the distribution of dedifferentiated Schwann cells was obvious. In group C, the nerve bundles were arranged neatly, and the tissue staining was the deepest. The number of Schwann cells in group B was (727.50±57.60) cells/mm 2, which was significantly more than that in group A [(298.33±153.12) cells/mm 2] ( t=6.139, P<0.001).
CONCLUSION
The fCUPE nerve conduit is effective in repairing long-distance sciatic nerve defects and is comparable to autologous nerve grafts. It has the potential to be used as a substitute material for peripheral nerve defect transplantation.
Rats
;
Animals
;
Male
;
Rats, Sprague-Dawley
;
Polyesters
;
Peripheral Nerve Injuries/surgery*
;
Elastomers
;
Urethane
;
Sciatic Nerve/injuries*
;
Carbamates
;
Nerve Tissue
;
Nerve Regeneration/physiology*
4.Enhanced endoplasmic reticulum RyR1 receptor phosphorylation leads to diaphragmatic dysfunction in septic rats.
Songlin WU ; Xuexin LI ; Fasheng GUAN ; Jianguo FENG ; Jing JIA ; Jing LI ; Li LIU
Journal of Southern Medical University 2023;43(4):631-636
OBJECTIVE:
To explore the role of endoplasmic reticulum ryanodine receptor 1 (RyR1) expression and phosphorylation in sepsis- induced diaphragm dysfunction.
METHODS:
Thirty SPF male SD rats were randomized equally into 5 groups, including a sham-operated group, 3 sepsis model groups observed at 6, 12, or 24 h following cecal ligation and perforation (CLP; CLP-6h, CLP-12h, and CLP-24h groups, respectively), and a CLP-24h group with a single intraperitoneal injection of KN- 93 immediately after the operation (CLP-24h+KN-93 group). At the indicated time points, diaphragm samples were collected for measurement of compound muscle action potential (CMAP), fatigue index of the isolated diaphragm and fitted frequencycontraction curves. The protein expression levels of CaMK Ⅱ, RyR1 and P-RyR1 in the diaphragm were detected using Western blotting.
RESULTS:
In the rat models of sepsis, the amplitude of diaphragm CMAP decreased and its duration increased with time following CLP, and the changes were the most obvious at 24 h and significantly attenuated by KN-93 treatment (P < 0.05). The diaphragm fatigue index increased progressively following CLP (P < 0.05) irrespective of KN- 93 treatment (P>0.05). The frequency-contraction curve of the diaphragm muscle decreased progressively following CLP, and was significantly lower in CLP-24 h group than in CLP-24 h+KN-93 group (P < 0.05). Compared with that in the sham-operated group, RyR1 expression level in the diaphragm was significantly lowered at 24 h (P < 0.05) but not at 6 or 12 following CLP, irrespective of KN-93 treatment; The expression level of P-RyR1 increased gradually with time after CLP, and was significantly lowered by KN-93 treatment at 24 h following CLP (P < 0.05). The expression level of CaMKⅡ increased significantly at 24 h following CLP, and was obviously lowered by KN-93 treatment (P < 0.05).
CONCLUSION
Sepsis causes diaphragmatic dysfunction by enhancing CaMK Ⅱ expression and RyR1 receptor phosphorylation in the endoplasmic reticulum of the diaphragm.
Rats
;
Male
;
Animals
;
Diaphragm/metabolism*
;
Ryanodine Receptor Calcium Release Channel/metabolism*
;
Rats, Sprague-Dawley
;
Phosphorylation
;
Muscle Contraction/physiology*
;
Endoplasmic Reticulum
;
Sepsis/metabolism*
5.Expression changes of NaV channel subunits correlate with developmental maturation of electrophysiological characteristics of rat cerebellar Purkinje neurons.
Mingyu FU ; Xiaohong JI ; Lei ZHONG ; Qiong WU ; Haifu LI ; Ningqian WANG
Journal of Southern Medical University 2023;43(7):1102-1109
OBJECTIVE:
To investigate the variations in the expression of voltage-gated sodium (Nav) channel subunits during development of rat cerebellar Purkinje neurons and their correlation with maturation of electrophysiological characteristics of the neurons.
METHODS:
We observed the changes in the expression levels of NaV1.1, 1.2, 1.3 and 1.6 during the development of Purkinje neurons using immunohistochemistry in neonatal (5-7 days after birth), juvenile (12-14 days), adolescent (21-24 days), and adult (42-60 days) SD rats. Using whole-cell patch-clamp technique, we recorded the spontaneous electrical activity of the neurons in ex vivo brain slices of rats of different ages to analyze the changes of electrophysiological characteristics of these neurons during development.
RESULTS:
The expression of NaV subunits in rat cerebellar Purkinje neurons showed significant variations during development. NaV1.1 subunit was highly expressed throughout the developmental stages and increased progressively with age (P < 0.05). NaV1.2 expression was not detected in the neurons in any of the developmental stages (P > 0.05). The expression level of NaV1.3 decreased with development and became undetectable after adolescence (P < 0.05). NaV1.6 expression was not detected during infancy, but increased with further development (P < 0.05). NaV1.1 and NaV1.3 were mainly expressed in the early stages of development. With the maturation of the rats, NaV1.3 expression disappeared and NaV1.6 expression increased in the neurons. NaV1.1 and NaV1.6 were mainly expressed after adolescence. The total NaV protein level increased gradually with development (P < 0.05) and tended to stabilize after adolescence. The spontaneous frequency and excitability of the Purkinje neurons increased gradually with development and reached the mature levels in adolescence. The developmental expression of NaV subunits was positively correlated with discharge frequency (r=0.9942, P < 0.05) and negatively correlated with the excitatory threshold of the neurons (r=0.9891, P < 0.05).
CONCLUSION
The changes in the expression levels of NaV subunits are correlated with the maturation of high frequency electrophysiological properties of the neurons, suggesting thatmature NaV subunit expressions is the basis of maturation of electrophysiological characteristics of the neurons.
Rats
;
Animals
;
Purkinje Cells/physiology*
;
Rats, Sprague-Dawley
;
Neurons
;
Brain
;
Sodium/metabolism*
6.The impact of amygdala glutamate receptors on cardiovascular function in rats with post-traumatic stress disorder.
Ya-Yang WU ; Kun-Yi CAI ; Yu-Jie WU ; Chao ZHENG ; Meng-Ya WANG ; Huan-Huan ZHANG
Acta Physiologica Sinica 2023;75(5):611-622
Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Stress Disorders, Post-Traumatic
;
Receptors, AMPA
;
6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology*
;
Receptors, Glutamate/metabolism*
;
Amygdala
;
Weight Gain
;
Medulla Oblongata/physiology*
;
Blood Pressure
7.Analysis of the effect of midazolam on pain in a rat model of lumbar disc herniation based on the p38 MAPK signaling pathway.
Jian LIU ; Yu-Jun YE ; Shu-Min LIU ; Shuang LIU
China Journal of Orthopaedics and Traumatology 2023;36(1):55-60
OBJECTIVE:
To investigate the effect of midazolam on pain in lumbar disc herniation model rats based on p38 MAPK signaling pathway.
METHODS:
Fifty SPF-grade Sprague-Dawley healthy rats, half male and half female, were selected and randomly divided into normal group, model group, and low-dose, medium-dose, high-dose groups. Model group and low-dose, medium-dose, high-dose groups were initially modeled for lumbar disc herniation. Intraperitoneal injection of saline was performed in rats of normal and model groups; and in the low-dose, medium-dose, and high-dose groups, intraperitoneal injection of midazolam was performed with doses of 30, 60, and 90 mg/kg, respectively. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), β-endorphin (β-EP), substance P (SP), neuropeptide Y (NPY) were detected in the serum of rats by enzyme-linked immunoassay. The expression of p38 MAPK and matrix metalloproteinase-3(MMP-3) protein were detected by Western blot in the tissues of rats of each group.
RESULTS:
The levels of TNF-α, IL-1β and β-EP were higher and the level of 5-HT was lower in the model group than in the normal group(P<0.05);the levels of TNF-α, IL-1β and β-EP were lower and the level of 5-HT was higher in the low-dose, medium-dose and high-dose groups than in the model group(P<0.05). The levels of SP and NPY increased in the model group compared with the normal group (P<0.05) and the levels of SP and NPY decreased in the low-dose, medium-dose and high-dose groups compared with the model group (P<0.05). The expression of p38 MAPK and MMP-3 increased in the model group compared with the normal group (P<0.05); the expression of p38 MAPK and MMP-3 decreased in the low-dose, medium-dose and high-dose compared with the model group(P<0.05).
CONCLUSION
Midazolam may ameliorate the immune inflammatory response in rats with a model of lumbar disc herniation, possibly regulated through the p38MAPK signaling pathway.
Rats
;
Male
;
Female
;
Animals
;
Intervertebral Disc Displacement/pathology*
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 3/metabolism*
;
Midazolam
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
MAP Kinase Signaling System/physiology*
;
Pain
;
p38 Mitogen-Activated Protein Kinases/metabolism*
8.Deciphering the dynamic characteristics of non-neuronal cells in dorsal root ganglion of rat at different developmental stage based on single cell transcriptome data.
Jiaqi ZHANG ; Junhua LIU ; Jie MA ; Pan SHEN ; Yunping ZHU ; Dong YANG
Chinese Journal of Biotechnology 2023;39(9):3772-3786
Dorsal root ganglia (DRG) is an essential part of the peripheral nervous system and the hub of the peripheral sensory afferent. The dynamic changes of neuronal cells and their gene expression during the development of dorsal root ganglion have been studied through single-cell RNAseq analysis, while the dynamic changes of non-neuronal cells have not been systematically studied. Using single cell RNA sequencing technology, we conducted a research on the non-neuronal cells in the dorsal root ganglia of rats at different developmental stage. In this study, primary cell suspension was obtained from using the dorsal root ganglions (DRGs, L4-L5) of ten 7-day-old rats and three 3-month-old rats. The 10×Genomics platform was used for single cell dissociation and RNA sequencing. Twenty cell subsets were acquired through cluster dimension reduction analysis, and the marker genes of different types of cells in DRG were identified according to previous researches about DRG single cell transcriptome sequencing. In order to find out the non-neuronal cell subsets with significant differences at different development stage, the cells were classified into different cell types according to markers collected from previous researches. We performed pseudotime analysis of 4 types Schwann cells. It was found that subtype Ⅱ Schwann cells emerged firstly, and then were subtype Ⅲ Schwann cells and subtype Ⅳ Schwann cells, while subtype Ⅰ Schwann cells existed during the whole development procedure. Pseudotime analysis indicated the essential genes influencing cell fate of different subtypes of Schwann cell in DRG, such as Ntrk2 and Pmp2, which affected cell fate of Schwann cells during the development period. GO analysis of differential expressed genes showed that the up-regulated genes, such as Cst3 and Spp1, were closely related to biological process of tissue homeostasis and multi-multicellular organism process. The down regulated key genes, such as Col3a1 and Col4a1, had close relationship with the progress of extracellular structure organization and negative regulation of cell adhesion. This suggested that the expression of genes enhancing cell homestasis increased, while the expression of related genes regulating ECM-receptor interaction pathway decreased during the development. The discovery provided valuable information and brand-new perspectives for the study on the physical and developmental mechanism of Schwann cell as well as the non-neuronal cell changes in DRG at different developmental stage. The differential gene expression results provided crucial references for the mechanism of somatosensory maturation during development.
Rats
;
Animals
;
Ganglia, Spinal/metabolism*
;
Rats, Sprague-Dawley
;
Transcriptome
;
Neurons/metabolism*
;
Schwann Cells/physiology*
9.Microglia activation and temporal changes in rat model of trigeminal neuralgia.
Yanzhu LU ; Jingqi ZHANG ; Wenli LAI
West China Journal of Stomatology 2022;40(6):638-644
OBJECTIVES:
This study aimed to investigate whether the microglia in the spinal trigeminal nucleus caudal part (Sp5C) were activated in a rat model of trigeminal neuralgia and to explore whether the activation level of microglia is consistent with maxillofacial pain level.
METHODS:
Chronic constriction injury of trigeminal nerve (CCI) was induced by partial ligation of infraorbital nerve (IoN) in rats. The behavioral change of rats observed at D1, D5, D10, D15, and D30 days post-surgery and the change of pain threshold were detected with electronic Von Frey filaments served as an evaluation index of maxillofacial pain. Weight change was measured by weighing. Ionized calcium binding adaptor molecule-1 (Iba-1) expression level of Sp5C at each time point was detected, and three microglia morphological categories were analyzed by immunohistochemical staining.
RESULTS:
The changes of behavioral and pain threshold suggested the maxillofacial pain level first increased and then decreased post-surgery in the IoN-CCI group. Both the expressions of Iba-1 and proportion of ameboid morphology in ipsilateral Sp5C increased from D1 and reached their peaks in D10 and D5, respectively. Then, they recovered nearly to the same level with contralateral Sp5C on D30. This trend was consistent with the maxillofacial change.
CONCLUSIONS
The model of trigeminal neuralgia in rats constructed by partial ligation of infraorbital nerve can induce the activation of microglia in Sp5C, and the activation level is consistent with maxillofacial pain, which reached its peak at around D10 post-surgery.
Rats
;
Animals
;
Trigeminal Neuralgia
;
Rats, Sprague-Dawley
;
Microglia
;
Pain Threshold/physiology*
;
Pain
10.The role of clock gene BMAL1 in exercise-induced skeletal muscle injury recovery.
Ze-Ting FU ; Yu XIA ; Hai-Li DING
Chinese Journal of Applied Physiology 2022;38(3):220-226
Objective: To investigate the role of clock gene BMAL1 in exercise-induced skeletal muscle injury recovery. Methods: Two hundred and eight 8-week-old SD rats were randomly divided into the control group (Group C, n=104) and the exercise group (Group E, n=104). Group E performed a 90-minute downhill run on the treadmill. After exercise, the gastrocnemius muscle of 8 rats in Group C and Group E were collected at 0 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h, 48 h, 54 h, 60 h, 66 h and 72 h. The expression of skeletal muscle core clock gene, BMAL1 was measured by real-time fluorescence quantitative PCR. The parameters of fitting cosine curve were obtained by cosine analysis software circacompare (R package), and the change trend of rhythmic oscillation was analyzed. The ultrastructure of skeletal muscle fibers was observed by transmission electron microscope. The expressions of skeletal muscle BMAL1 and DESMIN were detected by Western blot; Immunofluorescence was used to observe the localization and contents of BMAL1 and DESMIN. Results: In Group C, three complete circadian rhythm cycles of mRNA BMAL1 were observed within 72 hours; in Group E, the circadian rhythm of BMAL1 mRNA disappeared at 0 h~24 h. Compared with Group C, the expression level of BMAL1 mRNA was significantly increased at 0 h, 6 h, 12 h, and 18 h after exercise in Group E (P<0.05), and the expression of BMAL1 protein was significantly increased at 0 h and 12 h after exercise(P<0.05), and recovered to the level of that in Group C from 24 h to 72 h(P>0.05). The expression of DESMIN protein was decreased at 0 h and 12 h after exercise(P<0.05), gradually increased at 24 h, increased significantly at 48 h(P<0.01), and recovered to the control level at 72 h (P>0.05). In Group E, BMAL1 and DESMIN were co-localized at 0 h, 12 h, and 24 h after exercise; the colocalization at 0 h~24 h showed a trend of first decreasing and then increasing, and the fluorescence intensity at 24 h reached the highest value. Conclusion: The post-exercise clock gene BMAL1 may be involved in the enhanced synergy of regulating the cytoskeletal protein DESMIN, it is thus related to the promotion of muscle fiber structure recovery.
ARNTL Transcription Factors/metabolism*
;
Animals
;
Desmin/metabolism*
;
Muscle, Skeletal/physiology*
;
Physical Conditioning, Animal/adverse effects*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail