1.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
2.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
3.Qingda Granules alleviate brain damage in spontaneously hypertensive rats by modulating the miR-124/STAT3 signaling axis.
Qiaoyan CAI ; Yaoyao XU ; Yuxing LIN ; Haowei LIN ; Junpeng ZHENG ; Weixiang ZHANG ; Chunyu ZHAO ; Yupeng LIN ; Ling ZHANG
Journal of Southern Medical University 2025;45(1):18-26
OBJECTIVES:
To explore the mechanism of Qingda Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).
METHODS:
Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks. The control rats, along with 6 age-matched WKY rats, were treated with saline only. Blood pressure changes of the rats were monitored, and pathologies and neuronal apoptosis in the cerebral cortex were examined with HE staining and TUNEL staining. Cerebral cortical expressions of miR-124 and STAT3 mRNA were detected using RT-qPCR, and the protein expressions of NeuN, STAT3, Bcl-2, Bax, and cleaved caspase-3 were detected with immunohistochemistry and Western blotting. In a HT22 cell model of oxygen and glucose deprivation/reoxygenation (OGD/R), the effects of QDG on cell viability and apoptosis, expressions of miR-124 and STAT3 mRNA, and protein expressions of STAT3, Bcl-2, Bax, and cleaved caspase-3 were evaluated using CCK8 assay, Hoechst 33342 staining, RT-qPCR, and Western blotting.
RESULTS:
Compared with WKY rats, SHRs had significantly elevated systolic blood pressure, diastolic blood pressure and mean arterial pressure with significantly increased neuronal apoptosis in the cerebral cortex, reduced expressions of NeuN, miR-124 and Bcl-2, and enhanced expressions of STAT3, Bax and cleaved caspase-3 (P<0.05). All these changes in the SHRs were significantly ameliorated by treatment with QDG (P<0.05). In the HT22 cell model, QDG treatment obviously reduced OGD/R-induced cell apoptosis, increased the expressions of miR-124 and Bcl-2, and suppressed the elevation of protein expressions of STAT3, Bax and cleaved caspase-3.
CONCLUSIONS
QDG inhibits cerebral cortical neuronal apoptosis and thereby attenuates brain damage in SHR rats by modulating the miR-124/STAT3 signaling axis.
Animals
;
Rats, Inbred SHR
;
MicroRNAs/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Apoptosis/drug effects*
;
Rats, Inbred WKY
;
Male
;
Hypertension
4.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
5.Hypertension exacerbates postoperative learning and memory impairment in rats possibly due to UCP2 downregulation-mediated mitochondrial dysfunction.
Luyu LIU ; Maowei GONG ; Guosong LIAO ; Weixing ZHAO ; Qiang FU
Journal of Southern Medical University 2025;45(4):725-735
OBJECTIVES:
To explore the correlation of hypertension with postoperative cognitive dysfunction and its possible mechanism.
METHODS:
Twelve-week-old spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were both randomized into control group and surgical group (n=8). In the latter group, the rats received carotid artery exposure surgery under sevoflurane anesthesia to establish models of postoperative learning and memory impairment. Postoperative cognitive function changes of the rats were evaluated using behavioral tests. The hippocampus of the rats were collected for determining ATP level and mitochondrial membrane potential (MMP) and for detecting expressions of UCP2 and astrocyte markers (GFAP and NOX4) using Western blotting and immunofluorescence staining. Serum levels of ROS, IL-6, IL-1β and TNF‑α were detected using ELISA. Nissl staining was used to examine hippocampal neuronal loss in the CA1 region.
RESULTS:
The SHRs exhibited exacerbated learning and memory deficits following the surgery as shown by significantly reduced performance in novel object recognition tests and context-related and tone-related fear conditioning experiments. Compared with WKY rats, the SHRs had significantly decreased mitochondrial UCP2 expression and MMP in the hippocampus, increased hippocampal ATP level, and markedly increased serum levels of ROS and inflammatory factors, showing also increased activation of hippocampal astrocytes and microglia and reduced number of neurons positive for Nissl staining.
CONCLUSIONS
Hypertension can exacerbate major postoperative learning and memory impairment in rats possibly as a result of UCP2-mediated mitochondrial dysfunction and oxidative stress damage, which further leads to astrocyte overactivation and neuronal damage.
Animals
;
Rats, Inbred SHR
;
Rats
;
Uncoupling Protein 2
;
Rats, Inbred WKY
;
Hypertension/physiopathology*
;
Hippocampus/metabolism*
;
Mitochondria/metabolism*
;
Down-Regulation
;
Male
;
Memory Disorders/etiology*
;
Mitochondrial Proteins/metabolism*
6.Involvement of Interleukin-1 β/Insulin-Like Growth Factor 1 in Ameliorating Effects of Electroacupuncture on Myocardial Fibrosis Induced by Essential Hypertension.
Juan-Juan XIN ; Jun-Hong GAO ; Qun LIU ; Yu-Xue ZHAO ; Chen ZHOU ; Xiao-Chun YU
Chinese journal of integrative medicine 2023;29(2):162-169
OBJECTIVE:
To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 β (IL-1 β), insulin-like growth factor 1 (IGF-1), and transforming growth factor β 1 (TGF- β 1) to the effects.
METHODS:
Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 β, TGF- β 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively.
RESULTS:
After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 β, IGF-1, TGF-β 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 β, IGF-1, TGF-β 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01).
CONCLUSION
EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 β/IGF-1-TGF- β 1-MMP9 pathway.
Rats
;
Animals
;
Male
;
Rats, Inbred WKY
;
Electroacupuncture
;
Hypertension/therapy*
;
Insulin-Like Growth Factor I
;
Interleukin-1beta
;
Rats, Inbred SHR
;
Essential Hypertension
;
Myocardium/pathology*
;
Collagen Type I
;
Fibrosis
7.Intermittent heat exposure induces thoracic aorta injury in spontaneously hypertensive rats by activating the AMPK/mTOR/ULK1 pathway.
Chun Li YANG ; Shu Jing XUE ; Xiao Min WU ; Ling HOU ; Tao XU ; Guang Hua LI
Journal of Southern Medical University 2023;43(2):191-198
OBJECTIVE:
To investigate the effects of different manners of heat exposure on thoracic aorta injury in spontaneously hypertensive rats (SHRs) and explore the underlying mechanism.
METHODS:
Normal 6 to 7-week-old male SHRs were randomized into control group (cage at room temperature), intermittent heat exposure group (SHR-8 group, exposed to 32 ℃ for 8 h daily for 7 days) and SHR-24 group (with continuous exposure to 32 ℃ for 7 days). After the treatments, the pathologies of the thoracic aorta of the rats were observed with HE staining, and the expressions of Beclin1, LC3B and p62 were detected with Western blotting and immunofluorescence assay; TUNEL staining was used to observe cell apoptosis in the thoracic aorta, and the expressions of caspase-3, Bax, and Bcl-2 were detected using Western blotting. The effects of intraperitoneal injections of 3-MA (an autophagy agonist), rapamycin (an autophagy inhibitor) or compound C 30 min before intermittent heat exposure on the expressions of proteins associated with autophagy, apoptosis and the AMPK/mTOR/ULK1 pathway in the aorta were examined with immunohistochemistry.
RESULTS:
In SHR-8 group, the rats showed incomplete aortic intima with disordered cell distribution and significantly increased expressions of Beclin1, LC3II/LC3I and Bax, lowered expressions of p62 and Bcl-2, and increased apoptotic cells in the thoracic aorta (P < 0.05). Pretreatment with 3-MA obviously inhibited the expressions of autophagy- and apoptosis-related proteins, whereas rapamycin promoted their expressions. Compared with the control group, the rats in SHR-8 group had significantly down-regulated p-mTOR and up-regulated p-AMPK and p-ULK1 expression of in the aorta; Treatment with compound C obviously lowered the expressions of p-AMPK and p-ULK1 and those of LC3B and Beclin1 as well.
CONCLUSION
In SHRs, intermittent heat exposure causes significant pathologies and promotes autophagy and apoptosis in the thoracic aorta possibly by activating the AMPK/mTOR/ULK1 pathway.
Rats
;
Male
;
Animals
;
Rats, Inbred SHR
;
AMP-Activated Protein Kinases/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Aorta, Thoracic
;
Beclin-1
;
Hot Temperature
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Aortic Diseases
;
Autophagy
;
Autophagy-Related Protein-1 Homolog/metabolism*
8.Inducible co-stimulatory molecules participate in mesenteric vascular endothelial-mesenchymal transition and sclerosis of mesenteric vessels in spontaneously hypertensive rats.
Chang Le DU ; Yu WANG ; Ji Feng FU ; Dong Li CAO ; Ren Biao MEI ; Qi ZHANG
Journal of Southern Medical University 2023;43(2):308-316
OBJECTIVE:
To investigate the correlation of inducible co-stimulatory molecules (ICOS) with mesenteric vascular endothelial- mesenchymal transition (EndMT) and sclerosis in spontaneously hypertensive rats (SHR).
METHODS:
Twenty 4-week-old WKY rats and 20 SHRs of the same strain were both randomly divided into 4 groups for observation at 4, 6, 10 and 30 weeks of age. ICOS expression frequency in rat spleen CD4+T cells was analyzed using flow cytometry, and the expressions of ICOS, VE-cad, α-SMA and Col3 mRNA in rat mesentery were detected by RT-PCR. The distributions of ICOS, IL-17A and TGF-β in rat mesentery were detected by immunohistochemistry. The levels of IL-17A and TGF-β in rat plasma were measured using ELISA. The morphological changes of rat mesenteric vessels were observed with Masson staining. Spearman or Pearson correlation analyses were used to evaluate the correlation between ICOS expression and the expressions of the markers of vascular EndMT and sclerosis.
RESULTS:
Compared with the control WKY rats, the SHRs began to show significantly increased systolic blood pressure and ICOS expression frequency on CD4+T cells at 6 weeks of age (P < 0.05). In the SHRs, the mRNA and protein expressions of ICOS, α-SMA, Col3, IL-17A and TGF-β in the mesentery were significantly higher than those in control group (P < 0.05), while the mRNA and protein expressions of VE-cad started to reduce significantly at 10 weeks of age (P < 0.05). The plasma levels of IL-17A and TGF-β were significantly increased in SHRs since 6 weeks of age (P < 0.05) with progressive worsening of mesenteric vascular sclerosis (P < 0.05). ICOS mRNA and protein expression levels in the mesenteric tissues of SHRs began to show positive correlations with α-SMA and Col3 expression levels and the severity of vascular sclerosis at 6 weeks of age (P < 0.05) and a negative correlation with VE-cad expression level at 10 weeks (P < 0.05).
CONCLUSION
ICOS play an important pathogenic role in EndMT and sclerosis of mesenteric vessels in essential hypertension by mediating related immune responses.
Rats
;
Animals
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Hypertension
;
Interleukin-17
;
Sclerosis/pathology*
;
Transforming Growth Factor beta
;
Mesentery/pathology*
;
RNA, Messenger/metabolism*
;
Blood Pressure
9.Effect of electroacupuncture on myocardial fibrosis in spontaneously hypertensive rats based on cholinergic anti-inflammatory pathway.
Juan-Juan XIN ; Chen ZHOU ; Shuang WU ; Wen-Xi ZHANG ; Qun LIU ; Yu-Xue ZHAO ; Xiao-Chun YU ; Jun-Hong GAO
Chinese Acupuncture & Moxibustion 2023;43(10):1151-1156
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHR), and explore preliminarily the mediating role of cholinergic anti-inflammatory pathway (CAP) and its downstream nuclear factor κB (NF-κB) signaling pathway.
METHODS:
Six 12-week-old WKY male rats were employed as the normal group. Eighteen 12-week-old SHR were randomly divided into 3 groups, i.e. a model group, an EA group and a blocking group (EA after blocking α7 nicotinic acetylcholine receptor [α7nAchR]), with 6 rats in each one. In the EA group, EA was delivered at "Neiguan"(PC 6) and the site 0.5 cm from its left side, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity. One intervention took 30 min and was given once every 2 days, lasting 8 weeks. In the blocking group, prior to each EA, the α7nAchR specific blocker, α-bungartoxin was injected intravenously in the tails of the rats. After EA intervention, the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean arterial pressure (MAP) were measured with non-invasive blood pressure monitor. Using echocardiogram, the left ventricular (LV) anterior wall end-diastolic thickness (LVAWd) , LV posterior wall end-diastolic thickness (LVPWd) and the LV end-diastolic internal diameter (LVIDd) were measured. The level of hydroxyproline (Hyp) in the myocardial tissue was determined by using alkaline hydrolysis, and that of acetylcholine (Ach) was detected by ELISA. With the real-time PCR adopted, the mRNA expression of NF-κB p65, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were determined.
RESULTS:
Compared with the normal group, SBP, DBP, MAP, LVAWd and LVPWd were increased (P<0.01), and LVIDd was decreased (P<0.01) in the rats of the model group. SBP, DBP, MAP and LVAWd were dropped (P<0.01, P<0.05), and LVIDd rose (P<0.01) in the EA group when compared with those in the model group. The differences in the above indexes were not statistically significant between the blocking group and the model group (P>0.05). Compared with the normal group, Hyp level and the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue increased (P<0.01, P<0.05) and Ach level decreased (P<0.01) in the model group. Hyp level, the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue were reduced (P<0.05, P<0.01) and Ach level rose (P<0.01) in the EA group when compared with those in the model group. These indexes were not different statistically between the blocking group and the model group (P>0.05).
CONCLUSION
CAP may be involved in ameliorating the pathological damage of myocardial fibrosis during EA at "Neiguan"(PC 6). The underlying effect mechanism is associated with up-regulating the neurotransmitter, Ach and down-regulating mRNA expression of NF-κB p65 and pro-inflammatory factors such as TNF-α, IL-1β and IL-6 in myocardial tissue.
Rats
;
Male
;
Animals
;
Rats, Inbred SHR
;
NF-kappa B/metabolism*
;
Rats, Inbred WKY
;
Electroacupuncture
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Neuroimmunomodulation
;
alpha7 Nicotinic Acetylcholine Receptor
;
Acetylcholine
;
Fibrosis
;
RNA, Messenger
10.Endogenous corticotropin-releasing factor potentiates the excitability of presympathetic neurons in paraventricular nucleus via activation of its receptor 1 in spontaneously hypertensive rats.
Hong-Yu MA ; Xin-Qi GUO ; Qi-Yue ZHAO ; Pei-Yun YANG ; Huai-Bing ZHU ; Yue GUAN ; Yi ZHANG ; Hui-Jie MA
Acta Physiologica Sinica 2023;75(4):487-496
It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.
Rats
;
Animals
;
Rats, Inbred SHR
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Rats, Inbred WKY
;
Corticotropin-Releasing Hormone/metabolism*
;
Neurons/physiology*
;
Hypertension
;
Sympathetic Nervous System

Result Analysis
Print
Save
E-mail