1.Biological characteristics of pathogen causing damping off on Aconitum kusnezoffiii and inhibitory effect of effective fungicides.
Si-Yi GUO ; Si-Yao ZHOU ; Tie-Lin WANG ; Ji-Peng CHEN ; Zi-Bo LI ; Ru-Jun ZHOU
China Journal of Chinese Materia Medica 2025;50(7):1727-1734
Aconitum kusnezoffii is a perennial herbaceous medicinal plant of the family Ranunculaceae, with unique medicinal value. Damping off is one of the most important seedling diseases affecting A. kusnezoffii, occurring widely and often causing large-scale seedling death in the field. To clarify the species of the pathogen causing damping off in A. kusnezoffii and to formulate an effective control strategy, this study conducted pathogen identification, research on biological characteristics, and evaluation of fungicide inhibitory activity. Through morphological characteristics, cultural traits, and phylogenetic tree analysis, the pathogen causing damping off in A. kusnezoffii was identified as Rhizoctonia solani, belonging to the AG5 anastomosis group. The optimal temperature for mycelial growth of the pathogen was 25-30 ℃, with OA medium as the most suitable medium, pH 8 as the optimal pH, and sucrose and yeast as the best carbon and nitrogen sources, respectively. The effect of light on mycelial growth was not significant. In evaluating the inhibitory activity of 45 chemical fungicides, including 30% hymexazol, and 4 biogenic fungicides, including 0.3% eugenol, it was found that 30% thifluzamide and 50% fludioxonil had significantly better inhibitory effects on R. solani than other tested agents, with EC_(50) values of 0.129 6,0.220 6 μg·mL~(-1), respectively. Among the biogenic fungicides, 0.3% eugenol also showed an ideal inhibitory effect on the pathogen, with an EC_(50) of 1.668 9 μg·mL~(-1). To prevent the development of resistance in the pathogen and to reduce the use of chemical fungicides, it is recommended that the three fungicides above be used in rotation during production. These findings provide a theoretical basis for the accurate diagnosis and effective control strategy for R. solani causing damping off in A. kusnezoffii.
Fungicides, Industrial/pharmacology*
;
Plant Diseases/microbiology*
;
Rhizoctonia/growth & development*
;
Aconitum/microbiology*
;
Phylogeny
;
Mycelium/growth & development*
2.Research progress in chemical constituents and processing methods of Aconiti Lateralis Radix Praeparata.
Jia-Hao HU ; Wen-Ru LI ; Qing-Xin SHI ; Cheng-Wu SONG
China Journal of Chinese Materia Medica 2025;50(6):1458-1470
This article aims to study the processing methods by exploring the main chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms. The relevant articles were retrieved from multiple databases with the time interval of 1960-2024, and the chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms of its processing methods were summarized. The review revealed that the chemical constituents of Aconiti Lateralis Radix Praeparata included 32 diester-type alkaloids, 36 monoester-type alkaloids, 43 alkanolamine-type alkaloids, and 8 lipid-type alkaloids. At the same time, other chemical constituents such as water-soluble alkaloids were also studied, and their pharmacological activities were summarized. The toxicity-attenuating mechanisms of the processing methods included constituent loss, hydrolysis, ester exchange, and ion-pair action. The processing methods of Aconiti Lateralis Radix Praeparata have developed from being traditional to modern, with simplified operation and increased retention amounts of active constituents, which have improved the efficacy of processed Aconiti Lateralis Radix Praeparata products and have facilitated the industrial production. However, the existing processing methods of Aconiti Lateralis Radix Praeparata cannot completely solve the problem of possible reduction in efficacy during toxicity attenuation. More toxicity-attenuating mechanisms and lipid-type alkaloids of Aconiti Lateralis Radix Praeparata should be explored, which is expected to reduce its toxicity while retaining its efficacy.
Aconitum/toxicity*
;
Drugs, Chinese Herbal/isolation & purification*
;
Alkaloids/chemistry*
;
Animals
;
Humans
3.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
4.Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways.
Qiao CHU ; Xiaona WANG ; Jiaying XU ; Huilin PENG ; Yulin ZHAO ; Jing ZHANG ; Guoyu LU ; Kai WANG
Journal of Southern Medical University 2025;45(1):150-161
OBJECTIVES:
To explore the mechanism by which Pulsatilla saponin D (PSD) inhibits invasion and metastasis of triple-negative breast cancer (TNBC).
METHODS:
The public databases were used to identify the potential targets of PSD and the invasion and metastasis targets of TNBC to obtain the intersection targets between PSD and TNBC. The "PSD-target-disease" interaction network was constructed and protein-protein interaction (PPI) analysis was performed to obtain the core targets, which were analyzed for KEGG pathway and GO functional enrichment. Molecular docking study of the core targets and PSD was performed, and the therapeutic effect and mechanism of PSD were verified using Transwell assay and Western blotting in cultured TNBC cells.
RESULTS:
Network pharmacology analysis identified a total of 285 potential PSD targets and 26 drug-disease intersection core targets. GO analysis yielded 175 entries related to the binding of biomolecules (protein, DNA and RNA), enzyme activities, and regulation of gene transcription. KEGG analysis yielded 46 entries involving pathways in cancer, chemical carcinogenesis-receptor activation, microRNAs in cancer, chemical carcinogenesis-reactive oxygen species, PD-L1 expression and PD-1 checkpoint pathway in cancer. Molecular docking showed high binding affinities of PSD to MTOR, HDAC2, ABL1, CDK1, TLR4, TERT, PIK3R1, NFE2L2 and PTPN1. In cultured TNBC cells, treatment with PSD significantly inhibited cell invasion and migration and lowered the expressions of MMP2, MMP9, N-cadherin and the core proteins p-mTOR, ABL1, TERT, PTPN1, HDAC2, PIK3R1, CDK1, TLR4 as well as NFE2L2 expressionin the cell nuclei.
CONCLUSIONS
The inhibitory effects of PSD on TNBC invasion and metastasis are mediated by multiple targets and pathways.
Humans
;
Triple Negative Breast Neoplasms/metabolism*
;
Saponins/pharmacology*
;
Pulsatilla/chemistry*
;
Female
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Neoplasm Invasiveness
;
Protein Interaction Maps
;
Neoplasm Metastasis
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
5.Metabolomics as an emerging tool for the pharmacological and toxicological studies on Aconitum alkaloids.
Han DING ; Yamin LIU ; Sifan WANG ; Yuqi MEI ; Linnan LI ; Aizhen XIONG ; Zhengtao WANG ; Li YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):182-190
Aconitum (Ranunculaceae) has a long-standing history in traditional Chinese medicine (TCM), where it has been widely used to treat conditions such as rheumatoid arthritis (RA), myocardial infarction, and heart failure. However, the potency of Aconitum alkaloids, the primary active components of Aconitum, also confers substantial toxicity. Therefore, assessing the efficacy and toxicity of these Aconitum alkaloids is crucial for ensuring clinical effectiveness and safety. Metabolomics, a quantitative method for analyzing low-molecular-weight metabolites involved in metabolic pathways, provides a comprehensive view of the metabolic state across multiple systems in vivo. This approach has become a vital investigative tool for facilitating the evaluation of their efficacy and toxicity, identifying potential sensitive biomarkers, and offering a promising avenue for elucidating the pharmacological and toxicological mechanisms underlying TCM. This review focuses on the applications of metabolomics in pharmacological and toxicological studies of Aconitum alkaloids in recent years and highlights the significant role of metabolomics in exploring compatibility detoxification and the mechanisms of TCM processing, aiming to identify more viable methods for characterizing toxic medicinal plants.
Aconitum/metabolism*
;
Metabolomics/methods*
;
Alkaloids/metabolism*
;
Humans
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
6.Profiling the chemical differences of diterpenoid alkaloids in different processed products of Aconiti Lateralis Radix Praeparata by UHPLC-LTQ-Orbitrap mass spectrometry combined with untargeted metabolomics and mass spectrometry imaging.
Yang YU ; Changliang YAO ; Jianqing ZHANG ; Yong HUANG ; Shuai YAO ; Hua QU ; Tong ZHANG ; Dean GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):1009-1015
Aconiti Lateralis Radix Praeparata (Fuzi) represents a significant traditional Chinese medicine (TCM) that exhibits both notable pharmacological effects and toxicity. Various processing methods are implemented to reduce the toxicity of raw Fuzi by modifying its toxic and effective components, primarily diterpenoid alkaloids. To comprehensively analyze the chemical variations between different Fuzi products, ultra-high performance liquid chromatography-linear ion trap quadrupole Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) was employed to systematically characterize Shengfuzi, Heishunpian and Baifupian. A total of 249 diterpenoid alkaloids present in Shengfuzi were identified, while only 111 and 61 in Heishunpian and Baifupian were detected respectively, indicating substantial differences among these products. An untargeted metabolomics approach combined with multivariate statistical analysis revealed 42 potential chemical markers. Through subsequent validation using 52 batches of commercial Heishunpian and Baifupian samples, 8 robust markers distinguishing these products were identified, including AC1-propanoic acid-3OH, HE-glucoside, HE-hydroxyvaleric acid-2OH, dihydrosphingosine, N-dodecoxycarbonylvaline and three unknown compounds. Additionally, the MS imaging (MSI) technique was utilized to visualize the spatial distribution of chemical constituents in raw Fuzi, revealing how different processing procedures affect the chemical variations between Heishunpian and Baifupian. The distribution patterns of different diterpenoid alkaloid subtypes partially explained the chemical differences among products. This research provides valuable insights into the material basis for future investigations of different Fuzi products.
Diterpenes/chemistry*
;
Alkaloids/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Aconitum/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Metabolomics
;
Mass Spectrometry/methods*
;
Plant Roots/chemistry*
;
Molecular Structure
7.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*
8.Scientific connotation in processing of Aconiti Lateralis Radix Praeparata with Glycyrrhizae Radix et Rhizoma based on "interactions between excipients and herbal medicine and component transformation" dynamic processing.
Yi-Hang ZHAO ; Zhi-Wei WANG ; Lu-Ping YANG ; Xiao-Yu LIN ; Xin-Ru TAN ; Ran XU ; Zhi-Xia WANG ; Liu-Yang ZHANG ; An-Qi XU ; Hai-Min LEI ; Peng-Long WANG ; Xue-Mei HUANG
China Journal of Chinese Materia Medica 2024;49(22):6129-6137
The processing of traditional Chinese medicine(TCM) is a core theory within TCM, embodying deep philosophical, cultural, and natural scientific wisdom. Among the various techniques, the "synergistic processing of medicinal materials and excipients" has garnered significant attention due to its uniqueness. This study explored the impact of the adjuvant Glycyrrhizae Radix et Rhizoma on the dynamic process of component transformation during the processing of Aconiti Lateralis Radix Praeparata using techniques such as acidic dye colorimetry, UPLC-Q-TOF-MS/MS, density functional theory(DFT), and molecular dynamics simulations(MDS). The research revealed that during processing, various alkaloid components in Aconiti Lateralis Radix Praeparata exhibited different weak interactions with glycyrrhizic acid in Glycyrrhizae Radix et Rhizoma, affecting the transformation and content changes of alkaloid components such as aconitine, hypaconitine, and other diester-type alkaloids. This study, based on the dynamic process of "interactions between excipients and herbal medicine and component transformation", elucidated the intrinsic mechanism of processing of Aconiti Lateralis Radix Praeparata with Glycyrrhizae Radix et Rhizoma and provided a reference for understanding the scientific principles underlying the excipient processing of TCM.
Drugs, Chinese Herbal/chemistry*
;
Aconitum/chemistry*
;
Excipients/chemistry*
;
Glycyrrhiza/chemistry*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Molecular Dynamics Simulation
;
Alkaloids/chemistry*
;
Glycyrrhizic Acid/chemistry*
9.Exploring effects and mechanisms of Agrimoniae Herba-Coptidis Rhizoma containing serum on colorectal cancer cells via LAMP2A-mediated autophagy.
Ya-Ping HE ; Min-Yan HOU ; Xin-Ling SHEN ; Zhi-Yu LI ; Min XU ; Xuan CHEN ; Shu-Juan ZHANG ; Han XIONG ; Hai-Yan PENG
China Journal of Chinese Materia Medica 2024;49(21):5730-5742
This study investigated the effects of Agrimoniae Herba-Coptidis Rhizoma(XHC-HL)-medicated serum on the proliferation, migration, invasion, and apoptosis of human colorectal cancer HT29 and HCT116 cells via the autophagy mediated by lysosome-associated membrane protein type 2A(LAMP2A). Bioinformatics analysis was conducted to explore the role of LAMP2A in the development and progression of colorectal cancer. Western blot(WB) was used to detect the expression of LAMP2A protein in colorectal cancer cell lines. Lentiviral transfection was utilized to construct LAMP2A knockdown in HT29 and overexpression in HCT116 colorectal cancer cell models. Real-time fluorescence quantitative polymerase chain reaction(real-time qPCR) was performed to assess transfection efficiency. HT29 and HCT116 cells were treated with different concentrations of XHC-HL-medicated serum. The cell counting kit-8(CCK-8) assay was used to detect cell proliferation and determine the optimal concentration and duration of medicated serum intervention. HT29 cells were divided into a normal control(NC) group, an XHC-HL(medicated serum treatment) group, and an XHC-HL+shLAMP2A(medicated serum treatment+LAMP2A knockdown) group. HCT116 cells were divided into a NC group, an XHC-HL group, and an XHC-HL+LAMP2A(medicated serum treatment+LAMP2A overexpression) group. CCK-8 was used to measure cell viability. Colony formation assay was employed to assess cell proliferation ability. Scratch and Transwell migration assays were conducted to evaluate cell migration ability, and Transwell invasion assay was used to detect cell invasion ability. Flow cytometry was adopted to determine apoptosis rates. WB and real-time qPCR were employed to detect the effect of XHC-HL on the protein and mRNA expression of LAMP2A, heat shock cognate protein 70(HSC70), heat shock protein 90(HSP90), and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) in colorectal cancer cells. Differential expression analysis revealed that LAMP2A expression was significantly higher in colorectal cancer patients compared to that in normal controls. Survival analysis indicated that the key molecule of chaperone-mediated autophagy(CMA), LAMP2A, was closely associated with colorectal cancer progression. Gene set enrichment analysis showed that patients with high LAMP2A expression significantly upregulated tumor progression-related signaling pathways such as angiogenesis and immune suppression. Immune infiltration analysis found that patients with high LAMP2A expression had fewer CD8 T cell infiltrations in their tumor microenvironment. XHC-HL-medicated serum inhibited the viability of HT29 and HCT116 cells, with the optimal intervention concentration and duration being 20% and 48 hours, respectively. Compared to the NC group, XHC-HL inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells, and induced apoptosis. The medicated serum treatment with LAMP2A knockdown further inhibited colorectal cancer cell proliferation, invasion, and migration, and promoted apoptosis, whereas overexpression of LAMP2A reversed the inhibitory effects of the medicated serum on proliferation, migration, and invasion, and reduced apoptosis rates. XHC-HL-medicated serum inhibited CMA by upregulating the protein and mRNA expression of LAMP2A, HSC70, and HSP90 and downregulating substrate protein GAPDH expression via the autophagy mediated by LAMP2A. In conclusion, XHC-HL-medicated serum inhibits the proliferation, migration, and invasion of colorectal cancer cells and induces apoptosis by downregulating the expression of the key CMA molecule LAMP2A and inhibiting CMA activity.
Humans
;
Colorectal Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Lysosomal-Associated Membrane Protein 2/metabolism*
;
Cell Proliferation/drug effects*
;
Autophagy/drug effects*
;
HCT116 Cells
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
HT29 Cells
;
Serum/chemistry*
;
Coptis chinensis
10.Agrimoniae Herba-Coptidis Rhizoma inhibits angiogenesis in colorectal cancer inflammatory microenvironment based on network pharmacology and experiment validation.
Xin-Ling SHEN ; Hai-Yan PENG ; Huang-Jie FU ; Ya-Ping HE ; Zhi-Yu LI ; Min-Yan HOU ; Shu-Juan ZHANG ; Han XIONG
China Journal of Chinese Materia Medica 2024;49(21):5762-5770
This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled. The effects of different concentrations of the herb pair on the area, number, and length of intersegmental vessels(ISVs) of the zebrafish model were observed. Western blot and real-time quantitative PCR were employed to measure the protein and mRNA levels, respectively, of vascular endothelial growth factor A(VEGFA), vascular epidermal growth factor receptor 2(VEGFR2, also known as kdrl, Flk1), and vascular epidermal growth factor receptor 3(VEGFR3, also known as Flt4). A total of 18 active components and 488 potential targets of Agrimoniae Herba-Coptidis Rhizoma were predicted, and 108 common targets were shared by the herb pair and the disease. According to the results of KEGG pathway enrichment analysis, the angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway were selected for verification. The zebrafish experiment showed that compared with the blank group, the model group showed increased area, number, and length of ISVs in the inflammatory microenvironment. Compared with the model group, the herb pair decreased the area, number, and length of ISVs in a concentration-dependent manner. Compared with the blank group, the model group showed up-regulated protein and mRNA levels of VEGFA, kdrl, and Flt4 in the inflammatory microenvironment. Compared with the model group, the herb pair down-regulated the protein and mRNA levels of VEGFA, kdrl, and Flt4 in a concentration-dependent manner. The results indicated that in the colorectal cancer inflammatory microenvironment, the herb pair Agrimoniae Herba-Coptidis Rhizoma could inhibit angiogenesis via multiple components, targets, and pathways. The anti-angiogenesis effect might be related to the down-regulation of the expression levels of angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway.
Zebrafish
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Network Pharmacology
;
Colorectal Neoplasms/metabolism*
;
Neovascularization, Pathologic/drug therapy*
;
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Microenvironment/drug effects*
;
Angiogenesis Inhibitors/pharmacology*
;
Vascular Endothelial Growth Factor Receptor-2/metabolism*
;
Signal Transduction/drug effects*
;
Coptis chinensis
;
Inflammation/drug therapy*
;
Angiogenesis

Result Analysis
Print
Save
E-mail