1.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
2.Research progress on the association between blood mitochondrial DNA abundance and human diseases
Chunting XIAO ; Qianyan SHEN ; Yuquan RAN ; Yuquan RAN ; Yuquan RAN
Journal of Public Health and Preventive Medicine 2025;36(4):122-127
Mitochondria are semi-self-service organelles in eukaryotes. Their main function is to synthesize adenosine triphosphate (ATP), provide energy to cells through this pathway, and participate in a variety of activities within cells. These functions rely on the unique genetic material inside the mitochondria, known as mitochondrial DNA (mtDNA). Mitochondrial DNA abundance is the amount of mitochondrial DNA in a cell and is measured by the mitochondrial DNA copy number (mtDNA-CN). In recent years, as the scientific research community continues to deepen research on mitochondrial DNA abundance, and considering that blood mtDNA is relatively easier to obtain, researchers have begun to explore the potential relationship between blood mtDNA abundance and human health conditions and various diseases. Blood mtDNA abundance is increasingly considered as a possible biomarker for a variety of diseases. Research evidence has shown that blood mitochondrial DNA abundance is significantly correlated with diseases of human nervous system, kidney system and cardiovascular system, and can be used as a new biomarker for diagnosis and treatment. This review focuses on recent advances in the study of the association between blood mitochondrial DNA abundance and various human diseases.
3.Therapeutic effect of oral Xuefu Zhuyu Pill combined with intravitreal injection of Aflibercept in the treatment of retinal vein occlusion
Ran SHEN ; Hongying JI ; Hongyu CUI ; Lequan YANG ; Lixia GUO
International Eye Science 2025;25(9):1532-1536
AIM: To explore the therapeutic effect of oral Xuefu Zhuyu Pill combined with intravitreal injection of aflibercept in the treatment of retinal vein occlusion(RVO).METHODS: A total of 80 patients(80 eyes)with RVO admitted to our hospital from January 2021 to March 2024 were prospectively selected. According to the treatment method, they were divided into a control group of 40 patients treated with intravitreal injection of aflibercept, and an observation group of 40 patients treated with oral Xuefu Zhuyu Pill combined with intravitreal injection of aflibercept. The efficacy, TCM syndrome score, retinal microcirculation parameters, macular edema(ME), and adverse reactions were compared between the two groups of patients in the treatment of RVO.RESULTS: All patients have completed follow-up. The clinical effective rate of the observation group after treatment was 95%, obviously higher than that of the control group(80%; χ2=4.114, P=0.043). After treatment for 3 mo, the traditional Chinese medicine syndrome scores, foveal avascular area(FAZ)area, FAZ circumference, macular central retinal thickness, and neovascularization leakage area of both groups decreased, the overall blood flow density of the superficial capillary plexus(SCP)and deep capillary plexuses(DCP)increased, and the observation group showed better results than the control group(all P<0.05). There was no statistically significant difference in the occurrence of adverse reactions between the two groups during the treatment period(P>0.05).CONCLUSION: Oral administration of Xuefu Zhuyu Pill combined with intravitreal injection of aflibercept in the treatment of RVO can improve retinal microcirculation, enhance vision, restore ocular blood circulation, improve bleeding, promote ME absorption, and improve clinical efficacy.
4.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
5.Transparency of clinical practice guidelines: A mixed methods research.
Xinyi WANG ; Youlin LONG ; Tengyue HU ; Zixin YANG ; Liqin LIU ; Liu YANG ; Yifan CHENG ; Ran GU ; Yanjiao SHEN ; Nan YANG ; Jin HUANG ; Yaolong CHEN ; Liang DU
Chinese Medical Journal 2025;138(15):1882-1884
6.Profiling and functional characterization of long noncoding RNAs during human tooth development.
Xiuge GU ; Wei WEI ; Chuan WU ; Jing SUN ; Xiaoshan WU ; Zongshan SHEN ; Hanzhang ZHOU ; Chunmei ZHANG ; Jinsong WANG ; Lei HU ; Suwen CHEN ; Yuanyuan ZHANG ; Songlin WANG ; Ran ZHANG
International Journal of Oral Science 2025;17(1):38-38
The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs (lncRNAs). However, the dynamics of lncRNA expression during human tooth development remain poorly understood. In this research, we examined the lncRNAs present in the dental epithelium (DE) and dental mesenchyme (DM) at the late bud, cap, and early bell stages of human fetal tooth development through bulk RNA sequencing. Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis. Specific lncRNAs expressed in the DE and DM, such as PANCR, MIR205HG, DLX6-AS1, and DNM3OS, were identified through a combination of bulk RNA sequencing and single-cell analysis. Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ, such as the inner enamel epithelium and coronal dental papilla (CDP). Functionally, we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells. These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.
Humans
;
RNA, Long Noncoding/metabolism*
;
Odontogenesis/genetics*
;
Tooth Germ/embryology*
;
Cell Differentiation
;
Gene Expression Regulation, Developmental
;
Mesoderm/metabolism*
;
Tooth/embryology*
;
Gene Expression Profiling
;
Sequence Analysis, RNA
;
Dental Pulp/cytology*
7.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
8.Associations of onset age, diabetes duration and glycated hemoglobin level with ischemic stroke risk in type 2 diabetes patients: a prospective cohort study
Xikang FAN ; Mengyao LI ; Yu QIN ; Chong SHEN ; Yan LU ; Zhongming SUN ; Jie YANG ; Ran TAO ; Jinyi ZHOU ; Dong HANG ; Jian SU
Chinese Journal of Epidemiology 2024;45(4):498-505
Objective:To investigate the associations of onset age, diabetes duration, and glycated hemoglobin (HbA1c) levels with ischemic stroke risk in type 2 diabetes patients.Methods:The participants were from Comprehensive Research on the Prevention and Control of the Diabetes in Jiangsu Province. The study used data from baseline survey from December 2013 to January 2014 and follow-up until December 31, 2021. After excluding the participants who had been diagnosed with stroke at baseline survey and those with incomplete information on onset age, diabetes duration, and HbA1c level, a total of 17 576 type 2 diabetes patients were included. Cox proportional hazard model was used to calculate the hazard ratio ( HR) and 95% CI of onset age, diabetes duration, and HbA1c level for ischemic stroke. Results:During the median follow-up time of 8.02 years, 2 622 ischemic stroke cases were registered. Multivariate Cox proportional risk regression model showed that a 5-year increase in type 2 diabetes onset age was significantly associated with a 5% decreased risk for ischemic stroke ( HR=0.95, 95% CI: 0.92-0.99). A 5-year increase in diabetes duration was associated with a 5% increased risk for ischemic stroke ( HR=1.05, 95% CI: 1.02-1.10). Higher HbA1c (per 1 standard deviation increase: HR=1.17, 95% CI: 1.13-1.21) was associated with an increased risk for ischemic stroke. Conclusion:The earlier onset age of diabetes, longer diabetes duration, and high levels of HbA1c are associated with an increased risk for ischemic stroke in type 2 diabetes patients.
9.Association of serum gamma-glutamyl transferase levels with cardiovascular disease risk in type 2 diabetes patients: a prospective cohort study
Mian WANG ; Xikang FAN ; Jian SU ; Yu QIN ; Chong SHEN ; Yan LU ; Zhongming SUN ; Jie YANG ; Ran TAO ; Jinyi ZHOU ; Ming WU
Chinese Journal of Epidemiology 2024;45(10):1339-1347
To investigate the associations of serum gamma-glutamyl transferase (GGT) levels with the risk of cardiovascular disease (CVD) and its subtypes in patients with type 2 diabetes mellitus (T2DM) in Jiangsu Province.Methods:The participants were enrolled in the Comprehensive Research project regarding 'Prevention and Control of Diabetes' in Jiangsu Province. The baseline survey was conducted from 2013 to 2014, and follow-up until December 31, 2021. After excluding the participants who self-reported with chronic liver disease/stroke/coronary heart disease at baseline survey and those with incomplete information on GGT, a total of 16 147 T2DM patients were included in the final analysis. Cox proportional hazard regression models were used to calculate the hazard ratio ( HR) and their 95% CI of GGT for CVD, myocardial infarction, and stroke. Restricted cubic spline models were applied to analyze the dose-response relationship between GGT and the risk of CVD and its subtypes. Results:During the median follow-up time of 8.02 years, 2 860 CVD cases were registered, including 196 cases of myocardial infarction and 2 730 cases of stroke. Multivariate Cox proportional risk regression model indicated that compared to the lowest serum GGT level group, the highest GGT level group had a 24% increased risk of CVD ( HR=1.24, 95% CI: 1.09-1.41) and a 23% increased risk of stroke ( HR=1.23, 95% CI: 1.08-1.40). The restricted cubic spline model showed a nonlinear dose-response relationship between GGT and the risk of CVD, myocardial infarction, and stroke in T2DM patients. Conclusions:High levels of GGT may be associated with an increased risk of cardiovascular disease in T2DM patients, which needs further exploration and validation in future clinical practice.
10.Optical Mapping Technology to Evaluate the Dose Relationship of Aconitine Cardiotoxicity
Cuihan ZHANG ; Changhong SHEN ; Qian RAN ; Chen SUN ; Fang CHENG ; Ziqing YAO ; Ruoqi ZHANG
Chinese Journal of Modern Applied Pharmacy 2024;41(12):1631-1637
OBJECTIVE
To explore the effects of different concentrations of aconitine on the ventricular electrophysiology of the rat heart when applied to the heart.
METHODS
By optical mapping technology, the effects of different concentrations of aconitine on ventricular action potential and calcium signal in rats before and 15 min after administration were observed by in vitro administration of aconitine 0.3, 1, 3 ng·mL−1.
RESULTS
Compared with the blank group, aconitine could be concentration-dependent to delay the conduction of action potentials under both spontaneous and 6 Hz stimulation rhythms, and there was a significant difference at a concentration of 3 ng·mL−1(P<0.05 or P<0.01). Compared with blank group, when the concentration of aconitine was 1 and 3 ng·mL−1, the action potential duration(APD) of the ventricle was significantly prolonged(P<0.01). Aconitine could also increase the dispersion of action potential conduction(P<0.05) and reduce the ratio of effective refractory period(ERP) to APD90(P<0.01). In addition, aconitine could also be concentration-dependent delay of calcium signal conduction, reduce the speed of calcium conduction(P<0.05 or P<0.01), increase the dispersion of calcium conduction and calcium transient duration(P<0.05 or P<0.01), and reduce the amplitude of calcium signal(P<0.01).
CONCLUSION
Using the optical labeling technique, it can be visualized that aconitine induces arrhythmia by concentration-dependent delay of ventricular action potential and calcium signaling in rats.To explore the effects of different concentrations of aconitine on the ventricular electrophysiology of the rat heart when applied to the heart.
METHODS
By optical mapping technology, the effects of different concentrations of aconitine on ventricular action potential and calcium signal in rats before and 15 min after administration were observed by in vitro administration of aconitine 0.3, 1, 3 ng·mL−1.
RESULTS
Compared with the blank group, aconitine could be concentration-dependent to delay the conduction of action potentials under both spontaneous and 6 Hz stimulation rhythms, and there was a significant difference at a concentration of 3 ng·mL−1(P<0.05 or P<0.01). Compared with blank group, when the concentration of aconitine was 1 and 3 ng·mL−1, the action potential duration(APD) of the ventricle was significantly prolonged(P<0.01). Aconitine could also increase the dispersion of action potential conduction(P<0.05) and reduce the ratio of effective refractory period(ERP) to APD90(P<0.01). In addition, aconitine could also be concentration-dependent delay of calcium signal conduction, reduce the speed of calcium conduction(P<0.05 or P<0.01), increase the dispersion of calcium conduction and calcium transient duration(P<0.05 or P<0.01), and reduce the amplitude of calcium signal(P<0.01).
CONCLUSION
Using the optical labeling technique, it can be visualized that aconitine induces arrhythmia by concentration-dependent delay of ventricular action potential and calcium signaling in rats.


Result Analysis
Print
Save
E-mail