1.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
2.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus.
3.Mechanism of action of the fat mass and obesity-associated gene in the development and progression of metabolic dysfunction-associated fatty liver disease and related targeted therapies
Zhaoquan PAN ; Xudong LIU ; Weiqiang TAN ; Xiaoke RAN ; Yuan YUAN ; Xinfeng LOU
Journal of Clinical Hepatology 2025;41(6):1167-1173
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease with the pathological feature of lipid accumulation in the liver, and it is closely associated with liver metabolic disorders. The latest research has shown that the pathogenesis of MAFLD is associated with the abnormal expression of specific genes, especially the fat mass and obesity-associated (FTO) gene. The abnormal activity of the FTO gene may lead to an imbalance in liver lipid metabolism, which manifests as the increase in fatty acid synthesis and the reduction in fatty acid oxidation, thereby promoting liver fat deposition and inflammatory response. Therefore, regulating the expression or activity of the FTO gene is considered one of the potential strategies for the treatment of MAFLD. At present, drug research targeting the function of the FTO gene has achieved preliminary results, and inhibition of the activity of the FTO gene can help to regulate liver lipid metabolism and alleviate liver inflammatory injury. This article reviews the mechanism of action of the FTO gene in the development and progression of MAFLD, summarizes the advances in drug research on the FTO gene and related metabolic pathways in recent years, and analyzes their application prospect in research and treatment.
4.Association between unhealthy lifestyle and risk of heart disease and diabetes in the elderly in Xi'an
Ning CUI ; Jun LIU ; Rui WANG ; Nini MA ; Man ZHANG ; Aiping SUN ; Xiaomin RAN ; Aiqing PAN
Journal of Public Health and Preventive Medicine 2025;36(5):163-167
Objective To investigate the association between lifestyle and risk of heart disease and diabetes in the elderly population in Xi'an City. Methods From January 2021 to January 2024, a staged cluster sampling method was used to investigate the lifestyle and the occurrence of heart disease and diabetes in elderly population aged 60 years and above in the communities of Xi'an. Multivariate logistic regression was used to analyze the relationship between lifestyle and the risk of heart disease and diabetes. Results A total of 413 elderly people were investigated, of which 31.96% had heart disease, 27.12% had diabetes, and 10.90% had diabetes with heart disease. Multivariate logistic regression analysis revealed that age, BMI, family history, sweet food preference, smoking, and sitting and lying for a long time were risk factors for diabetes in the elderly population (P<0.05). Age, BMI, family history, history of diabetes, preference for salted products, smoking, drinking, and sitting and lying for a long time were risk factors for heart disease in the elderly population (P<0.05). Conclusion The incidence rates of heart disease and diabetes are high in the elderly population in Xi'an City. The risk of diabetes is related to unhealthy lifestyles such as sweet food preference, smoking, and sitting and lying for a long time, while heart disease is related to unhealthy lifestyles such as preference for salted products, smoking, drinking, and sitting and lying for a long time.
5.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
6.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
7.Forensic performance and genetic background analyses of Guizhou Chuanqing population using a self-constructed microhaplotype panel.
Hongling ZHANG ; Changyun GU ; Qiyan WANG ; Xiaolan HUANG ; Qianchong RAN ; Zheng REN ; Yubo LIU ; Yansha LUO ; Shuaiji PAN ; Meiqing YANG ; Jingyan JI ; Xiaoye JIN
Journal of Southern Medical University 2025;45(7):1442-1450
OBJECTIVES:
To investigate the ethnic origin of Chuanqing people, one of the largest unidentified ethnic groups in Guizhou, China, and analyze its genetic relationships with surrounding populations.
METHODS:
Based on a self-developed microhaplotype system, we conducted genotyping and analyzed the genetic distribution of microhaplotype loci and their forensic applicability in Chuanqing population in Guizhou Province. Using the microhaplotype data from different intercontinental populations and previously reported data from Han population living in Guizhou Province, we systematically investigated the genetic background of Chuanqing people through population genetic approaches, including genetic distance estimation, principal component analysis, and phylogenetic tree construction.
RESULTS:
Among the studied population, the number of haplotype per microhaplotype ranged from 6 to 25. The average expected heterozygosity (He), observed heterozygosity (Ho), power of discrimination (PD), and probability of exclusion (PE) were 0.8291, 0.8301, 0.9387, and 0.6593, respectively. The cumulative power of discrimination (CPD) and cumulative probability of exclusion (CPE) for these 33 loci were 1-2.62×10-41 and 1-7.64×10-17, respectively. Population genetic analyses revealed that the Chuanqing population had close genetic relationships with the East Asian populations, especially the local Guizhou Han population, Beijing Han population and the Han populations living in southern China.
CONCLUSIONS
The 33 microhaplotypes exhibit high levels of genetic diversity in the Guizhou Chuanqing population, highlighting their potentials for both forensic identification and parentage testing. The Han populations might have contributed a significant amount of genetic material to the Chuanqing population during the formation and development of the latter.
Humans
;
China/ethnology*
;
Ethnicity/genetics*
;
Forensic Genetics/methods*
;
Genetics, Population
;
Genotype
;
Haplotypes
;
Phylogeny
;
East Asian People/genetics*
8.Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress: A Randomized Crossover Study.
Ning GAO ; Bin WANG ; Ran ZHAO ; Han ZHANG ; Xiao Qian JIA ; Tian Xiang WU ; Meng Yuan REN ; Lu ZHAO ; Jia Zhang SHI ; Jing HUANG ; Shao Wei WU ; Guo Feng SHEN ; Bo PAN ; Ming Liang FANG
Biomedical and Environmental Sciences 2025;38(11):1388-1403
OBJECTIVE:
The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.
METHODS:
A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens, and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.
RESULTS:
Urinary concentrations of 2-hydroxyphenanthrene (2-OH-PHE) ( β = 4.35% [95% confidence interval ( CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene ( β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene (4-OH-PHE) ( β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene (1-OH-PYR) ( β = 3.05% [95% CI: -4.66%, -1.41%]), 2-OH-PHE ( β = 2.68% [95% CI: -4%, -1.34%]), and 4-OH-PHE ( β = 3% [95% CI: -4.68%, -1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.
CONCLUSION
Exposure to multiple organic pollutants can adversely affect cardiopulmonary health. Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function.
Humans
;
Oxidative Stress/drug effects*
;
Male
;
Cross-Over Studies
;
Female
;
Young Adult
;
Environmental Pollutants/toxicity*
;
Environmental Exposure/adverse effects*
;
Biomarkers/blood*
;
Adult
;
Blood Pressure/drug effects*
;
Polycyclic Aromatic Hydrocarbons/urine*
;
Beijing
9.Effect and possible mechanism of Wuzi Yanzong Pill on motor function of neurons in Parkinson's disease mice
Tao PAN ; Qi XIAO ; Hui-Jie FAN ; Lei XU ; Lu JIA ; Shao-Chen QIN ; Li-Ran WANG ; Cun-Gen MA ; Bo ZHANG ; Zhi CHAI
Medical Journal of Chinese People's Liberation Army 2024;49(5):550-556
Objective To observe the effects of Wuzi Yanzong Pill(WYP)on motor function in a mouse model of Parkinson's disease(PD)and to explore its potential mechanisms.Methods Twenty-four male C57BL/6 mice were randomly divided into control group,model group and WYP group,with 8 mice in each group.Mice in model and WYP group were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 7 consecutive days to establish a PD model.From the 1st day of model preparation,mice in WYP group were gavaged with WYP solution[16 g/(kg·d)]twice daily for 14 consecutive days.At the same time,mice in control group and model group were gavaged with 0.9%NaCl solution[50 ml/(kg·d)]twice a day.Gait experiment was utilized to assess the behavioral performance of mice in each group.Immunofluorescence staining was conducted to detect the number of tyrosine hydroxylase(TH)-positive cells in the substantia nigra region,the fluorescence intensity of nuclear factor E2-related factor 2(Nrf2),and the number of NeuN neurons co-labeled with Nrf2 in each group.Western blotting was employed to determine the expression levels of TH,Kelch-like ECH-associated protein 1(Keap-1),Nrf2,and heme oxygenase-1(HO-1)in the brain tissue of mice in each group.Results The gait experiment results showed that,compared with control group,standing time of the left front paw,right front paw,left hind paw,and right hind paw of the mice in model group was significantly shortened(P<0.01),while swinging time of the left front paw,right front paw,left hind paw,and right hind paw was significantly prolonged(P<0.05).Compared with model group,standing time of the left front paw and right hind paw of the mice in WYP group was significantly prolonged(P<0.05),while swing time of the left front paw and right front paw was significantly shortened(P<0.05).Immunofluorescence staining and Western blotting results showed that,compared with control group,in model group the number of TH-positive cells,average fluorescence intensity of Nrf2,and HO-1 levels decreased(P<0.01),while the Keap-1 protein level increased(P<0.01),and the number of Nrf2 expression on NeuN neurons decreased(P<0.001).Compared with model group,the number of TH-positive cells,average fluorescence intensity of Nrf2,HO-1 level,and the number of Nrf2 expression on NeuN neurons in the brain tissue of mice in WYP group increased(P<0.05),while Keap-1 protein level decreased(P<0.05).Conclusions WYP could alleviate the motor dysfunction and protect dopaminergic neurons in PD mice.The underlying mechanism may be related to the regulation of Keap-1/Nrf2/HO-1 pathway to inhibit oxidative stress response.
10.Protective effect of liraglutide on acute lung injury in septic mice and its mechanism
Junping GUO ; Ran PAN ; Lijun WANG ; Yueliang ZHENG ; Mao ZHANG ; Guirong WANG
Chinese Journal of Emergency Medicine 2024;33(8):1134-1139
Objective:To explore the protective effects of liraglutide on acute lung injury in septic mice and its mechanisms.Methods:Thirty-six male FVB/NJ mice were randomly(random number) divided into three groups: control group (Control, n=12), acute lung injury group (ALI, n=12)and liraglutide intervention group (ALI+LIRA, n=12). Mice model of acute lung injury were prepared by intratracheal instillation of Pseudomonas aeruginosa suspension, while the control group were given intratracheal instillation of equal volume of physiological saline; the mice in ALI+LIRA group were received subcutaneous injection of liraglutide (2 mg/kg) 30 minutes post-induction, while both the mice in control group and ALI group were received subcutaneous injection of equal volume physiological saline. After 24 hours, the mice were euthanized, the lung tissues and bronchoalveolar lavage fluid (BALF) were collected, the lung pathological damage changes were evaluated by hematoxylin eosin staining, the expression of surfactant associated protein D (SP-D)in lung tissue were detected by immunofluorescence assay; total protein concentration in BALF were detected by BCA method, and the levels of interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α)levels in BALF were measured by enzyme-linked immunosorbent assay(ELISA), the protein expression of SP-D in BALF and lung tissue were determined by Western blot. Statistical analysis was performed by SPSS software, and continuous variables were compared with one-way analysis of variance among the groups. Results:Compared with the control group, the mice in ALI group had higher lung histopathology injury score, higher total protein concentration, higher IL-6 and TNF-α levels in BALF, and had less SP-D positive cells in lung tissue; and also had lower expression of SP-D in both BALF and lung tissue, with statistical significance (all P<0.05). Compared with ALI group, the mice in ALI+LIRA group had lower lung histopathology injury score, lower total protein concentration, lower IL-6 and TNF- α levels in BALF, and had more SP-D positive cells in lung tissue; and also had higher expression of SP-D in both BALF and lung tissue, with statistical significance (all P<0.05). Conclusions:Liraglutide attenuates the severity of acute lung injury in septic mice, and its protective mechanism may be associated with the promotion of SP-D secretion.


Result Analysis
Print
Save
E-mail