1.Effect of fibroblast growth factor receptor 1 inhibitor on bone destruction in rats with collagen-induced arthritis
Haihui HAN ; Xiaohui MENG ; Bo XU ; Lei RAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(5):968-977
BACKGROUND:Preliminary research by our group suggests that targeting fibroblast growth factor receptor 1(FGFR1)may be an effective strategy for treating RA. OBJECTIVE:To investigate the effects of an FGFR1 inhibitor(PD173074)on bone destruction in rats with collagen-induced arthritis. METHODS:Twenty-five female Sprague-Dawley rats were randomly divided into five groups:normal control group,model group,methotrexate group,low-dose PD173074 group,and high-dose PD173074 group.Except for the normal control group,rat models of type Ⅱ collagen-induced arthritis were made in each group.After successful modeling,rats were injected intraperitoneally with sterile PBS in the normal and model groups,1.04 mg/kg methotrexate in the methotrexate group,and 5 and 20 mg/kg in the low-dose group and high-dose PD173074 groups,once a week.After 4 weeks of drug administration,clinical symptoms and joint swelling in rats were observed.Micro-CT was used for three-dimensional reconstruction and analysis of the ankle joints.Pathological changes in the ankle joints were observed.Periarticular angiogenesis and the expression of receptor activator of nuclear factor-Κb ligand were detected.The expression levels of p-FGFR1,vascular endothelial growth factor A,and tartrate-resistant acid phosphatase in the synovial membrane were measured.Pathological changes in the liver,spleen,and kidney were observed and liver,spleen,and kidney indices were calculated. RESULTS AND CONCLUSION:PD173074 could alleviate clinical symptoms and joint swelling,delay bone loss,improve bone structure,reduce synovial invasion and cartilage bone erosion,reduce the number of periarticular osteoclasts,inhibit angiogenesis in synovial tissues,reduce the expression of receptor activator of nuclear factor-Κb ligand,and inhibit the expression of FGFR1 phosphorylated protein,tartrate-resistant acid phosphatase and vascular endothelial growth factor A.Pathologic observation of the liver,spleen and kidney in rats showed no obvious toxic side effects after PD173074 treatment.To conclude,the FGFR1 inhibitor can delay the progression of joint inflammation and bone destruction and inhibit angiogenesis in the rat model of type Ⅱ collagen-induced arthritis.The therapeutic effect of PD173074 has been preliminarily validated in the type Ⅱ collagen-induced arthritis model and may act by inhibiting FGFR1 phosphorylation,which provides a direction for the search of new therapeutic targets for rheumatoid arthritis.
2.Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis
Haihui HAN ; Lei RAN ; Xiaohui MENG ; Pengfei XIN ; Zheng XIANG ; Yanqin BIAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(9):1905-1912
BACKGROUND:Although researchers have noted that fibroblast growth factor receptor 1 shows great potential in rheumatoid arthritis bone destruction,there is a lack of reviews related to the potential mechanisms of fibroblast growth factor receptor 1 in rheumatoid arthritis bone destruction. OBJECTIVE:To comprehensively analyze the mechanism of fibroblast growth factor receptor 1 in bone destruction in rheumatoid arthritis by reviewing the relevant literature at both home and abroad. METHODS:We searched the CNKI database using the Chinese search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,bone cells,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,vascular endothelial cells."PubMed database was searched using the English search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,osteocytes,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,endothelial cells."The search period focused on April 1992 to January 2024.After screening the literature by reading titles,abstracts,and full texts,a total of 82 articles were finally included for review according to inclusion and exclusion criteria. RESULTS AND CONCLUSION:Fibroblast growth factor receptor 1 was found to be widely expressed in bone tissue-associated cells,including osteoblasts,osteoclasts,and osteoclasts.Fibroblast growth factor receptor 1 affects bone remodeling and homeostasis by regulating the function of these cells,as well as promoting the onset and progression of bone destruction in rheumatoid arthritis.Fibroblast growth factor receptor 1 is involved in the inflammatory response of synovial fibroblasts and macrophages and regulates angiogenesis of endothelial cells in synovial tissues.Fibroblast growth factor receptor 1 promotes bone destruction in several ways.Fibroblast growth factor receptor 1 may be a potential causative agent of bone destruction in rheumatoid arthritis and provides a reference for further research on its therapeutic targets.
3.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
4.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
5.Prediction of Potential Regulatory Pathways Involving The Notch Signaling Pathway and Its Associated Non-coding RNAs in Alzheimer’s Disease Based on Database Analysis
Meng-Lin LÜ ; Xing-Ran LIU ; Xian-Juan KOU
Progress in Biochemistry and Biophysics 2025;52(8):1942-1957
Alzheimer’s disease (AD) is a chronic, progressive, and irreversible neurodegenerative disorder that typically begins with a subtle onset and progresses slowly. Pathologically, it is characterized by two hallmark features: the extracellular accumulation of amyloid β-protein (Aβ), forming senile plaques, and the intracellular hyperphosphorylation of tau protein, resulting in neurofibrillary tangles (NFTs). These pathological changes are accompanied by substantial neuronal and synaptic loss, particularly in critical brain regions such as the cerebral cortex and hippocampus. Clinically, AD presents as a gradual decline in memory, language abilities, and spatial orientation, significantly impairing the quality of life of affected individuals. With the aging population steadily increasing in China, the incidence of AD is rising, making it a major public health concern that requires urgent attention. The growing societal and economic burden of AD underscores the pressing need to identify effective diagnostic biomarkers and develop novel therapeutic strategies. Among the various molecular signaling pathways involved in neurological disorders, the Notch signaling pathway is especially noteworthy due to its evolutionary conservation and regulatory roles in cell proliferation, differentiation, development, and apoptosis. In the central nervous system, Notch signaling is essential for neurodevelopment and synaptic plasticity and has been implicated in several neurodegenerative processes. Although some studies suggest that Notch signaling may influence AD-related pathology, its precise role in AD remains poorly understood. In particular, the interaction between Notch signaling and non-coding RNAs (ncRNAs)—key regulators of gene expression—has received limited attention. NcRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are known to exert extensive regulatory functions at both transcriptional and post-transcriptional levels. Dysregulation of these molecules has been widely associated with various diseases, including cancers, cardiovascular conditions, and neurodegenerative disorders. Notably, interactions between ncRNAs and major signaling pathways such as Notch can produce widespread biological effects. While such interactions have been increasingly reported in several disease models, comprehensive studies investigating the regulatory relationship between Notch signaling and ncRNAs in the context of AD remain scarce. Given the capacity of ncRNAs to modulate signaling cascades and form complex regulatory networks, a deeper understanding of their crosstalk with the Notch pathway could provide novel insights into AD pathogenesis and reveal potential targets for diagnosis and treatment. In this study, we investigated the regulatory landscape involving the Notch signaling pathway and associated ncRNAs in AD using bioinformatics approaches. By integrating data from multiple public databases, we systematically identified significantly dysregulated Notch pathway-related genes and their interacting ncRNAs in AD. Based on this analysis, we constructed a lncRNA-miRNA-mRNA regulatory network to elucidate the potential mechanisms linking Notch signaling to ncRNA-mediated gene regulation in AD pathogenesis. Furthermore, we explored the internal relationships and molecular mechanisms within this network and assessed the feasibility and clinical relevance of these molecules as early diagnostic biomarkers and potential therapeutic targets for AD. This study aims to deepen our understanding of the molecular basis of AD and offer novel strategies for its diagnosis and treatment.
6.Prenatal diagnosis and outcomes of 17q12 microdeletion and microduplication
Ran ZHOU ; Yan WANG ; Lulu MENG ; Yiyun XU ; Jiao JIAO ; Yiming LI ; Ping HU ; Zhengfeng XU
Chinese Journal of Perinatal Medicine 2024;27(1):33-39
Objective:To analyze the prenatal characteristics and pregnancy outcomes of fetuses with 17q12 microdeletion or microduplication.Methods:From January 2018 to December 2022, 14 fetuses diagnosed with 17q12 microdeletion and three with 17q12 microduplication by chromosomal microarray analysis folloning invasive prenatal diagnostic techniques at Nanjing Maternity and Child Health Care Hospital were retrospectively enrolled in this study. Relevant articles up to February 1, 2023, were retrieved from PubMed, Embase, China National Knowledge Infrastructure, Wanfang database, and Yiigle with the terms "17q12 microdeletion", "17q12 microduplication", "prenatal diagnosis", and "pregnancy outcome". Eighty-four 17q12 microdeletion cases and fourteen 17q12 microduplication cases were retrieved. Prenatal ultrasound features and pregnancy outcomes of those fetuses were analyzed and summarized.Results:In this study, ninety-eight 17q12 microdeletion cases and seventeen 17q12 microduplication cases were analyzed. (1) 17q12 microdeletion: The prenatal ultrasound showed all the 17q12 microdeletion cases had renal abnormalities (100.0%, 98/98), and renal hyperechogenicity was detected in 81.6% (80/98) of them; pedigree analysis suggested that 74.2% (49/66) mutations were de novo; 64.1% (41/64) of pregnant women chose to terminate the pregnancy and 35.9%(23/64) chose to continue pregnancy; eight out of 12 live births who were followed up had different degrees of abnormalities and four were normal during the follow-up period. (2) 17q12 microduplication: Among the 17 fetuses, 10 had upper gastrointestinal obstruction; pedigree analysis suggested that four were de novo mutations (4/13); nine out of 14 pregnant women with reported pregnancy outcomes chose to terminate the pregnancy, and five continued the pregnancy to delivery; follow up of the live births found that four neonates were normal and one had a good prognosis after surgery. Conclusions:Fetuses with 17q12 microdeletion often show renal hyperechogenicity in ultrasound images, and most mutations were de novo with poor prognosis. 17q12 microduplication in fetuses is often characterized by upper gastrointestinal obstruction, and most inherited from their parents.
7.Role of histidine-rich glycoproteins in the neovascularization of diabetic retinopathy in rats
Qiyan RAN ; Junhao HE ; Jie WU ; Meng YE ; Yuhao WU ; Wei TAN ; Qiang CHEN
International Eye Science 2024;24(12):1873-1881
AIM: To investigate the role of histidine-rich glycoprotein(HRG)in the neovascularization of diabetic retinopathy in rats.METHODS: Streptozocin(STZ)-induced diabetic Sprague-Dawley(SD)rats were utilized as an experimental model, the protein expression of HRG and vascular endothelial growth factor(VEGF)in the retinas of normal(Wild type, WT)and diabetic(diabetic mellitus, DM)groups was detected using Western blot(WB). The protein expression of HRG in high-glucose-induced human retinal microvascular endothelial cells(hRMECs)was verified by WB after transfection with HRG small interfering RNA(siRNA)low-expression sequences. The optimal si-HRG#298 sequence was selected for further experiments. In the animal experiment, HRG gene silencing was achieved using an adeno-associated virus(AAV)vector, with AAV2-sh-NC and AAV2-sh-HRG#298 serving as the HRG gene silencing group and the HRG empty vector control group, respectively. The protein expression of HRG and VEGF in each group was then detected by WB following the verification of HRG protein expression. Retinal structural changes were observed by HE staining, and neovascularization changes were observed by PAS staining.RESULTS: HE staining found that the retinal structure in the DM group was disordered, the number of cells in the ganglion cell layer decreased, the number of cells in the inner and outer nuclear layers decreased, and the total retinal thickness also decreased(P<0.05); cellular capillaries were significantly increased in DM rats observed by PAS staining(P<0.05); the protein expression of HRG and angiogenesis factor VEGF was up-regulated in the retina of DM group(P<0.05); the protein expression of HRG was significantly downregulated in high glucose-induced hRMECs(P<0.05); the inhibition of neovascularization in diabetic retinas and the downregulation of VEGF protein expression were achieved through HRG gene silencing(P<0.05).CONCLUSION: HRG promotes neovascularization in the retinas of diabetic rats, and HRG gene silencing can inhibit neovascularization.
8.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
9.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.
10.The Potential Mechanism of Hippo Signaling Pathway and Its Related miRNA Intervention in Alzheimer’s Disease and Parkinson’s Disease
Xing-Ran LIU ; Meng ZHANG ; Xian-Juan KOU
Progress in Biochemistry and Biophysics 2024;51(7):1485-1509
The main characteristics of neurodegenerative diseases represented by Alzheimer’s disease (AD) and Parkinson’s disease (PD) is the progressive irreversible loss of neurons, leading to varying degrees of pathological changes and loss of cognitive function. There is still no effective treatment. With the acceleration of global aging society, the incidence of neurodegenerative diseases is rapidly increasing, becoming a serious global public health concern that urgently requires the development of effective therapeutic strategies. The Hippo signaling pathway, a highly evolutionarily conserved pathway, consists of the core components MST1/2, LATS1/2, and downstream effectors, transcriptional co-activators YAP and TAZ. It plays a crucial role in the regulation of various biological processes such as cell proliferation, differentiation, development, and apoptosis. Dysregulation of the Hippo pathway contributes to the development of many diseases, including cancer, cardiovascular diseases, immune disorders, etc. Therefore, targeting the dysregulated components of the Hippo pathway may be an effective strategy for treating various diseases. Increasing evidence indicates that the Hippo pathway is excessively activated in the development of neurodegenerative diseases, manifested by increased expression of MST1 and downregulation of YAP. Stabilizing the Hippo pathway levels has shown improvements in AD and PD. However, most studies on the Hippo pathway in AD and PD focus on changes in the expression levels of Hippo pathway components, and research in other neurodegenerative diseases is still lacking. Therefore, further investigation is needed to fully understand the mechanistic role of the Hippo pathway in neurodegenerative diseases. Meanwhile, miRNA, similarly dysregulated in neurodegenerative diseases and serving as biomarkers, is a primary target for miRNA therapy in neurodegenerative diseases, including AD and PD. Activating or inhibiting dysregulated miRNAs is the main strategy of miRNA therapy during the neurodegenerative disease development. Evidence suggests that the interaction between the Hippo pathway and miRNA can result in widespread biological effects and crosstalk in the occurrence of different types of diseases. However, studies on the interplay between the Hippo pathway and miRNA in neurodegenerative diseases are relatively scarce. In this paper, we predicted the miRNAs related to Hippo pathway through bioinformatics database, and further screened the miRNAs with crosstalk relationship with Hippo signaling pathway through experiments in combination with PubMed. Then, the mechanism of action of Hippo signaling pathway related miRNAs in AD and PD is further elucidated. It is reported that the Hippo pathway and its related miRNA may exert neuroprotective effects by reducing oxidative stress, improving neuroinflammation, stabilizing autophagy levels, maintaining neuronal mitochondrial function, and ameliorating blood-brain barrier dysfunction, thereby delaying the progression of AD and PD. However, research on miRNA directly regulating the Hippo pathway to improve AD and PD is limited, and observations of the Hippo pathway and its related miRNA in other neurodegenerative diseases are scarce. However, considering the regulatory relationship between the Hippo pathway and miRNA in multiple diseases and their respective roles in key mechanisms of neurodegenerative diseases, such as oxidative stress and neuroinflammation, the crosstalk between miRNA and the Hippo pathway holds a crucial regulatory role in the development of neurodegenerative diseases. Thus, the interaction pathways of the Hippo pathway and its related miRNA may be a pivotal avenue for exploring effective therapeutic strategies for neurodegenerative diseases in the future.

Result Analysis
Print
Save
E-mail