1.The role of histone deacetylase 3 in diabetes and its complications, and the research progress on histone deacetylase 3 inhibitors
Jia-yu ZHAI ; Cun-yu FENG ; Xue-feng GAO ; Li-ran LEI ; Lei LEI ; Yi HUAN
Acta Pharmaceutica Sinica 2025;60(1):1-11
Histone deacetylase 3 (HDAC3) is an epigenetic modification enzyme that plays a crucial role in the development and progression of diabetes and its complications. Studies have reported that increased HDAC3 activity is associated with pancreatic
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Summary and analysis of the 2024 national intercomparison of individual dose monitoring
Yu WANG ; Yifan YU ; Qing ZHAO ; Ran JIA ; Qinjian CAO ; Xueli HOU
Chinese Journal of Radiological Health 2025;34(5):746-750
Objective Based on the “excellent” performance achieved by our institution in the 2024 national intercomparison of monitoring individual dose from external exposure, this paper systematically summarizes key technical elements and optimization experiences in instrument calibration, operational protocols, and data analysis, aiming to provide methodological references and practical support for continuously enhancing the accuracy and reliability of individual dose monitoring. Methods As a participant in the intercomparison activity, our laboratory strictly followed the technical protocol formulated by the Chinese Center for Disease Control and Prevention. Results In the 2024 national intercomparison of monitoring individual dose from external exposure, the measurement results met the criteria of single-group performance
4.Pharmacological effects and clinical evaluation of zilucoplan for generalized myasthenia gravis
Lu CHENG ; Ran XIE ; Nan ZHAO ; Bo JIA ; Xia ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(9):1368-1371
Zilucoplan is a novel subcutaneous self-administered macrocyclic peptide inhibitor of complement component 5.It was approved by the FDA in October 2023 for the treatment of adults with generalized myasthenia gravis(gMG)who are positive for acetylcholine receptor(AChR)antibodies.This article reviews its pharmacological action,pharmacokinetics,clinical evaluation and safety.
5.Effects of hawthorn leaves flavonoids on angiotensin Ⅱ-induced cardiac hypertrophy by regulating miR-21a-5p
Lin-Yan TIAN ; Ran ZHU ; Ju-Ping DAI ; Jia-Jia WANG ; Bin ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2182-2186
Objective To explore the effect and mechanism of hawthorn leaves flavonoids(HLF)on angiotensin Ⅱ(Ang Ⅱ)-induced myocardial hypertrophy.Methods The H9c2 cells were divided into control group(normal culture),model group(100 nmol·L-1 Ang Ⅱ for 24 h),experimental-L,-M,-H groups(received 100 nmol·L-1 Ang Ⅱ for 24 h,then treated with 25,50 and 100 mg·L-1 HLF for 24 h,respectively),anti-miR-NC and anti-miR-21a-5p groups(transfected with anti-miR-NC and anti-miR-21a-5p,then treated with 100 nmol·L-1 Ang Ⅱ for 24 h),miR-NC+high-dose and miR-21a-5p+high-dose group(transfected with miR-NC and miR-21a-5p mimics,then treated with 100 nmol·L-1 Ang Ⅱ for 24 h+100 mg·L-1 HLF for 24 h).The cell viability was detected by cell counting kit-8.The cell apoptosis was measured by flow cytometry.The expression levels of miR-21a-5p was assessed by quantitative real-time polymerase chain reaction.The expression levels of cyclooxygenase-2(COX2)and prostaglandin E2(PGE2)was measured by Western blot.Results The cell viabilities of control,model group experimental-H groups were 1.03±0.09,0.51±0.05 and 0.93±0.08;cell apoptosis rates were(7.69±0.61)%,(23.04±1.82)%and(9.43±0.71)%;the expression levels of miR-21a-5p were 1.00±0.09,2.43±0.18 and 1.09±0.08;the relative expression levels of COX2 protein were 0.42±0.03,0.85±0.08 and 0.40±0.04;the relative expression levels of PGE2 protein were 0.34±0.03,0.75±0.07 and 0.35±0.03;the differences of above indexes were statistically significant between the model group and the control and experimental-H groups(all P<0.05).The cell viabilities of anti-miR-NC,anti-miR-21a-5p,miR-NC+high dose and miR-21a-5p+high dose groups were 0.52±0.04,1.12±0.08,0.94±0.09 and 0.57±0.04;the cell apoptosis rates were(23.04±1.82)%,(9.86±0.73)%,(9.47±0.64)%and(24.96±1.94)%;the expression levels of miR-21a-5p were 1.00±0.10,0.43±0.04,1.00±0.09 and 2.12±0.18;the relative expression levels of COX2 protein were 0.86±0.05,0.39±0.04,0.41±0.03 and 0.78±0.07;the relative expression levels of PGE2 protein were 0.74±0.06,0.38±0.07,0.36±0.02 and 0.71±0.05.Compared the anti-miR-21a-5p group with the anti-miR-NC group,compared the miR-21a-5p+high-dose group with the miR-NC+high-dose group,the differences of above indexes were statistically significant(all P<0.05).Conclusion HLF can inhibit Ang Ⅱ-induced myocardial hypertrophy by regulating the expression of miR-21a-5p and COX2/PGE2 pathway.
6.The Role of Prefrontal Cortex in Social Behavior
Gan-Jiang WEI ; Ling WANG ; Jing-Nan ZHU ; Xiao WANG ; Yu-Ran ZANG ; Chen-Guang ZHENG ; Jia-Jia YANG ; Dong MING
Progress in Biochemistry and Biophysics 2024;51(1):82-93
Social behavior is extremely important for the physical and mental health of individuals, their growth and development, and for social development. Social behavioral disorders have become a typical clinical representation of a variety of psychiatric disorders and have serious adverse effects on the development of individuals. The prefrontal cortex, as one of the key areas responsible for social behavior, involves in many advanced brain functions such as social behavior, emotion, and decision-making. The neural activity of prefrontal cortex has a major impact on the performance of social behavior. Numerous studies demonstrate that neurons and glial cells can regulate certain social behaviors by themselves or the interaction which we called neural microcircuits; and the collaboration with other brain regions also regulates different types of social behaviors. The prefrontal cortex (PFC)-thalamus projections mainly influence social dominance and social preference; the PFC-amygdala projections play a key role in fear behavior, emotional behavior, social exploration, and social identification; and the PFC-nucleus accumbens projections mainly involve social preference, social memory, social cognition, and spatial-social associative learning. Based on the above neural mechanism, many studies have focused on applying the non-invasive neurostimulation to social deficit-related symptoms, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) and focused ultrasound stimulation (FUS). Our previous study also investigated that repetitive transcranial magnetic stimulation can improve the social behavior of mice and low-intensity focused ultrasound ameliorated the social avoidance behavior of mice by enhancing neuronal activity in the prefrontal cortex. In this review, we summarize the relationship between neurons, glial cells, brain projection and social behavior in the prefrontal cortex, and systematically show the role of the prefrontal cortex in the regulation of social behavior. We hope our summarization will provide a reference for the neural mechanism and effective treatment of social disorders.
7.GPR40 novel agonist SZZ15-11 regulates glucolipid metabolic disorders in spontaneous type 2 diabetic KKAy mice
Lei LEI ; Jia-yu ZHAI ; Tian ZHOU ; Quan LIU ; Shuai-nan LIU ; Cai-na LI ; Hui CAO ; Cun-yu FENG ; Min WU ; Lei-lei CHEN ; Li-ran LEI ; Xuan PAN ; Zhan-zhu LIU ; Yi HUAN ; Zhu-fang SHEN
Acta Pharmaceutica Sinica 2024;59(10):2782-2790
G protein-coupled receptor (GPR) 40, as one of GPRs family, plays a potential role in regulating glucose and lipid metabolism. To study the effect of GPR40 novel agonist SZZ15-11 on hyperglycemia and hyperlipidemia and its potential mechanism, spontaneous type 2 diabetic KKAy mice, human hepatocellular carcinoma HepG2 cells and murine mature adipocyte 3T3-L1 cells were used. KKAy mice were divided into four groups, vehicle group, TAK group, SZZ (50 mg·kg-1) group and SZZ (100 mg·kg-1) group, with oral gavage of 0.5% sodium carboxymethylcellulose (CMC), 50 mg·kg-1 TAK875, 50 and 100 mg·kg-1 SZZ15-11 respectively for 45 days. Fasting blood glucose, blood triglyceride (TG) and total cholesterol (TC), non-fasting blood glucose were tested. Oral glucose tolerance test and insulin tolerance test were executed. Blood insulin and glucagon were measured
8.Pharmacokinetics of wogonin-aloperine cocrystal in rats
Zhong-shui XIE ; Chun-xue JIA ; Yu-lu LIANG ; Xiao-jun ZHAO ; Bin-ran LI ; Jing-zhong HAN ; Hong-juan WANG ; Jian-mei HUANG
Acta Pharmaceutica Sinica 2024;59(9):2606-2611
Pharmaceutical cocrystals is an advanced technology to improve the physicochemical and biological properties of drugs. However, there are few studies on the
9.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
10.Regulation of chondrocyte autophagy by acupotomy to promote chondrocyte homeostasis in osteoarthritis
Xiaofei JIA ; Li RAN ; Xiaoshuang MA ; Xiaoyan HEI ; Jiani LIU ; Nan YANG ; Haibin MA ; Jingpeng CHANG
Chinese Journal of Tissue Engineering Research 2024;28(34):5452-5457
BACKGROUND:Acupotomy is an effective method for the clinical treatment of osteoarthritis,with affirmed clinical outcomes,but the specific mechanisms remain unclear OBJECTIVE:To investigate the role of acupotomy in modulating chondrocyte autophagy to promote chondrocyte homeostasis in osteoarthritis. METHODS:Twenty-eight New Zealand rabbits were randomly divided into control group,osteoarthritis group,acupotomy group,and hyaluronic acid group,with seven rabbits in each group.The knee osteoarthritis rabbit model was prepared using the Videman method in the latter three groups.After modeling,the control group and osteoarthritis group received no interventions.The acupotomy group received acupotomy treatment 15 minutes per time,once a week,while the hyaluronic acid group received intra-articular injection of hyaluronic acid once a week,with a continuous treatment duration of 5 weeks.The day after the final intervention,knee joint macrostructure was observed using DR imaging,chondrocyte ultrastructure was examined through transmission electron microscopy,apoptosis of chondrocytes was assessed using Tunel staining,and western blot analysis was used to detect the expression of proteins related to the PI3K/Akt/mTOR pathway. RESULTS AND CONCLUSION:The DR imaging results revealed that the osteoarthritis group exhibited narrowed knee joint spaces and the formation of periarticular osteophytes,while the hyaluronic acid group and acupotomy group showed widened knee joint spaces with a reduction in periarticular osteophytes.Transmission electron microscopy results demonstrated a decreased number of autophagosomes in chondrocytes in the osteoarthritis group,along with nuclear shrinkage,nuclear membrane rupture,incomplete organelle morphology,and a clear tendency towards cell death.In contrast,both the hyaluronic acid group and acupotomy group exhibited a significant increase in autophagosomes,intact nuclear membranes,and a well-preserved cellular state.Tunel staining results indicated a considerable decrease in the number of apoptotic cells in the hyaluronic acid group and acupotomy group compared with the osteoarthritis group.Western blot results revealed that,compared with the control group,the expression levels of Beclin1,Cath D,and LC3II/LC3I were significantly decreased in the osteoarthritis group(P<0.05),while the expression levels of p-Akt/Akt and p-mTOR/mTOR were significantly increased(P<0.05);compared with the osteoarthritis group,the expression levels of Beclin1,Cath D,and LC3II/LC3I were significantly increased in both the hyaluronic acid group and acupotomy group(P<0.05),while the expression levels of p-Akt/Akt and p-mTOR/mTOR were significantly decreased(P<0.05).To conclude,acupotomy intervention can modulate the PI3K/Akt/mTOR signaling pathway to enhance the autophagic level in chondrocytes,thereby maintaining chondrocyte homeostasis.This ultimately leads to a slowdown in cartilage degeneration.

Result Analysis
Print
Save
E-mail