1.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
2.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
3.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
4.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
5.Effect of Cinobufacini on HepG2 cells based on CXCL5/FOXD1/VEGF pathway
Xiao-Ke RAN ; Xu-Dong LIU ; Hua-Zhen PANG ; Wei-Qiang TAN ; Tie-Xiong WU ; Zhao-Quan PAN ; Yuan YUAN ; Xin-Feng LOU
Chinese Pharmacological Bulletin 2024;40(12):2361-2368
Aim To investigate the impact of Cinobu-facini on the proliferation,invasion,and apoptosis of HepG2 cells and the underlying mechanism.Methods The proliferation of HepG2 cells was assessed using the CCK-8 method following treatment with Cinobufaci-ni.The invasion capability of HepG2 cells was evalua-ted through Transwell assay after exposure to Cinobufa-cini.The apoptosis rates of HepG2 cells post Cinobufa-cini intervention were measured using flow cytometry,and the expression levels of VEGF in the culture medi-um of HepG2 cells were determined using enzyme-linked immunoassay.Furthermore,qRT-PCR and Western blot analyses were conducted to assess the im-pact of Cinobufacini on mRNA and protein expression levels related to the CXCL5/FOXD1/VEGF pathway.The interaction between CXCL5 and FOXD1 was inves-tigated via co-immunoprecipitation.Results Cinobufa-cini treatment led to a gradual decrease in HepG2 cell viability in a dose-dependent manner compared to the control group(P<0.05).Moreover,Cinobufacini sig-nificantly suppressed HepG2 cell invasion(P<0.05)while enhancing cell apoptosis(P<0.05).Notably,Cinobufacini exhibited inhibitory effects on the CX-CL5/FOXD1/VEGF pathway,as evidenced by re-duced expression of related mRNA and proteins(P<0.05).FOXD1 was identified as the binding site of CXCL5.Overexpression of CXCL5 resulted in in-creased proliferation and VEGF secretion by HepG2 cells(P<0.05),and increased expression of FOXD1 and VEGF(P<0.05).However,Cinobufacini inter-vention effectively inhibited liver cancer cell prolifera-tion and invasion(P<0.05),promoted apoptosis(P<0.05),reduced VEGF secretion by HepG2 cells(P<0.05),and downregulated the expression of CXCL5 and FOXD1 in HepG2 cells(P<0.05);but com-pared with the unexpressed group of Cinobufacini,its ability to inhibit cell activity was weakened(P<0.05),and its ability to inhibit the expression of CX-CL5,FOXD1,and VEGF was weakened(P<0.05).Conclusion Cinobufacini may inhibit HepG2 cell pro-liferation and invasion and promote HepG2 cell apopto-sis by regulating the CXCL5/FOXD1/VEGF pathway.
6.Genomic and cellular infection characteristics of a newly isolated Mangshi virus in China
Heng YANG ; Zhan-Hong LI ; Lei XIAO ; Zhuo-Ran LI ; Jia-Rui XIE ; De-Fang LIAO ; Lin GAO ; Hua-Chun LI
Chinese Journal of Zoonoses 2024;40(6):504-511,528
The genomic characteristics and cellular tropism of a Mangshi virus(MSV)isolated in China were investigated,thereby establishing a robust foundation for further research on the evolution and pathogenicity of MSV.The genome sequence of MSV strain V301/YNJH/2019 was obtained by next-generation sequencing,followed by phylogenetic tree construction and rearrangement assessment using software IQtree,RPD4,and Simplot.Viral proliferation was assessed in C6/36(Aedes albop-ictus),Vero(African green monkey kidney),and BHK(baby hamster kidney)cells.An initial epidemiological investigation of MSV in local cattle and goats was conducted using the serum neutralization test.The genome of MSV strain V301/YNJ H/2019 was 20623 bp in length,encompassing 12 segments of double-stranded RNA(Seg-1 to Seg-12).Sequence analysis confirmed genomic rearrangement of the Seg-1 and Seg-11 sequences,ex-hibiting high similarity to MSV isolated from lake sediment in China in 2022,while Seg-2 to Seg-10 and Seg-12 were most closely related to a MSV strain isolated from mosquitoes in China in 2013.The virus efficiently proliferated and induced sig-nificant cytopathic effects(CPE)in both C6/36 and BHK cells,but limited replication and no observable CPE in Vero cells.No detectable neutralizing antibodies against MSV were detected in 20 goat serum samples collected in Mangshi,while 2 of 20 bo-vine serum samples were positive with neutralizing antibody titers of 1:128 and 1:54.Whole genome sequencing revealed re-assortment events of the V301/YNJH/2019 strain,which is capable of infecting C6/36,BHK,and Vero cells.MSV infection was confirmed in cattle in Mangshi.
7.Ionizing radiation-induced damage(IRD)to and repair mechanisms of the male reproductive system:Report of testicular function changes in a case of IRD
Neng-Liang DUAN ; Hua-Pei WANG ; Yuan-Shuai RAN ; Zhi-Xiang GAO ; Feng-Mei CUI ; Qiu CHEN ; Yu-Long LIU ; You-You WANG ; Bo-Xin XUE ; Xiao-Long LIU
National Journal of Andrology 2024;30(8):687-695
Objective:To investigate the impact of ionizing radiation(IR)on the structure and function of the testis and pro-vide some strategies for the prevention and treatment of IR-induced damage(IRD).Methods:Using radiation dose simulation,se-men analysis,hormone testing,electron microscopy and single-cell transcriptome sequencing,we assessed and analyzed a case of IRD.We established a mouse model of IRD to validate the results of single-cell sequencing,and investigated the specific biological mecha-nisms of IRD and potential strategies for its intervention.Results:IR at 1-2 Gy significantly reduced sperm concentration and mo-tility,which gradually recovered after 12 months but the percentage of morphologically normal sperm remained low.It also caused im-balanced levels of various steroid hormones,decreased testosterone and dehydroepiandrosterone sulfate,increased progesterone,prolac-tin,luteinizing hormone,and follicle-stimulating hormone.Electron microscopy revealed damages to the testis structure,including loss of germ cells,atrophy of the seminiferous tubules,nuclear membrane depression of the spermatocytes,mitochondrial atrophy and de-formation,and reduction of mitochondrial cristae.Single-cell sequencing indicated significant changes in the function of the Leydig cells and macrophages and disrupted lipid-related metabolic pathways after IRD.Administration of L-carnitine to the mouse model im-proved lipid metabolism disorders and partially alleviated IRD to the germ cells.Conclusion:Ionizing radiation can cause disorders of testicular spermatogenesis and sexual hormones and inhibit lipid metabolism pathways in Leydig cells and macrophages.Improving lipid metabolism can alleviate IRD to germ cells.
8.Sertraline hydrochloride combined with compound chamomile lidocaine gel for the treatment of premature ejaculation
Shu-Gen LI ; Shang GAO ; Zhen-Wei GU ; Dao-Hua ZHAO ; Jie JIANG ; Xiao-Ting LU ; Lan-Xiang LIU ; Hao-Ran LIU ; Ze CHEN
National Journal of Andrology 2024;30(9):809-812
Objective:To investigate the effect of sertraline hydrochloride combined with compound chamomile lidocaine gel in the treatment of premature ejaculation(PE).Methods:We selected 80 cases of PE treated in our hospital from June 2021 to May 2023 and equally randomized them into a control and an observation group,the former medicated with compound chamomile lidocaine gel while the latter with sertraline hydrochloride in addition,both for 6 weeks.We recorded and compared the intravaginal ejaculation latency time(IELT),the number of successful sexual intercourses per week,the Premature Ejaculation Diagnostic Tool(PEDT)scores,and the incidence of adverse reactions between the two groups of patients.Results:After the treatment,the IELT was signif-icantly longer([5.39±1.17]vs[2.49±0.73]min,P<0.05),the weekly number of successful sexual intercourses remarkably higher(1.82±0.45 vs 0.93±0.19,P<0.05)and the PEDT scores markedly lower(7.42±2.04 vs 9.85±2.36,P<0.05)in the observation than in the control group,but no statistically significant differences were observed in the baseline PEDT scores or the incidence of adverse reactions between the two groups(P>0.05).Conclusion:Sertraline hydrochloride combined with com-pound chamomile lidocaine gel is definitely effective in the treatment of PE,which can significantly improve the patients'quality of sexual life,with a high safety and low incidence of adverse reactions.
9.Simultaneous determination of eight constituents in Lianhua Qingwen Capsules by LC-MS/MS
Piao-Ran QIN ; Jia-Ye TIAN ; Su-Xia LI ; Fan GAO ; Wen-Hua YU ; Xing-Chao LIU ; Qiu-Hong GUO
Chinese Traditional Patent Medicine 2024;46(11):3564-3568
AIM To establish an LC-MS/MS method for the simultaneous content determination of forsythin,forsythoside A,chlorogenic acid,neochlorogenic acid,amygdalin,emodin,rhein and salidroside in Lianhua Qingwen Capsules.METHODS The analysis was performed on a 35℃thermostatic ACQUITY UPlC-HSS T3 column(100 mm×2.1 mm,1.8 μm),with the mobile phase comprising of 0.1%formic acid-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Eight constituents showed good linear relationships within their own ranges(r≥0.999 5),whose average recoveries were 99.20%-100.96%with the RSDs of 0.62%-1.23%.CONCLUSION This simple,sensitive and reliable method can be used for the quality control of Lianhua Qingwen capsules.
10.Locking compression plating for treatment of periprosthetic distal femur fractures in the aged
Yake LIU ; Zhenyu ZHOU ; Ran TAO ; Yi CAO ; Jianwei ZHU ; Youhua WANG ; Yue LU ; Hua XU ; Jiacheng XU ; Hongdong MA ; Jining SHEN ; Fengxiang ZHAO ; Kefan WU ; Fan LIU
Chinese Journal of Orthopaedic Trauma 2024;26(9):790-796
Objective:To explore the clinical outcomes of locking compression plating (LCP) in the treatment of periprosthetic fracture (PPF) of the distal femur in the aged patients.Methods:A retrospective study was performed to analyze the 31 aged patients who had been treated at Department of Orthopedic Surgery, The Affiliated Hospital to Nantong University for PPF of the distal femur with LCP between June 2012 and May 2023. There were 27 females and 4 males with an age of (80.2±6.1) years. According to the Unified Classification System (UCS), 18 PPFs were classified as type Ⅴ.3B1 and 6 PPFs as type Ⅴ.3B2 after total knee arthroplasty and 7 PPFs as type Ⅳ.3C after total hip arthroplasty. The patients were fixated with a lateral single plate in 25 cases, and with lateral and medial dual plates in 6 cases. The surgical time, intraoperative blood loss, hospitalization time, postoperative weight-bearing time, fracture healing time, and knee joint function and complications during follow-up were recorded.Results:For the 25 patients undergoing fixation with a lateral single plate, the surgical time was (58.7±7.9) minutes, the intraoperative blood loss (78.0±15.1) mL, the hospitalization time (6.9±1.6) days, the postoperative weight-bearing time (5.9±1.4) days, and the follow-up time 37 (15, 51) months. For the 6 patients undergoing fixation with lateral and medial dual plates, the surgical time was (186.6±9.8) minutes, the intraoperative blood loss (1,256.7±231.2) mL, the hospitalization time (17.8±3.3) days, the postoperative weight-bearing time (3.6±0.6) days, and the follow-up time 17 (16, 21) months. The fracture healing time was (14.9±2.0) and (18.7±2.6) weeks, respectively, for patients fixed with single and double steel plates. By the scoring criteria of the American Hospital for Special Surgery (HSS), the knee joint function was evaluated at the last follow-up as excellent in 10 cases and as good in 15 cases for the 25 patients undergoing fixation with a lateral single plate, and as good for all the 6 patients undergoing fixation with lateral and medial dual plates. No patient experienced such complications as incision infection, bone nonunion, or internal fixation failure during the follow-up period.Conclusions:LCP fixation can achieve satisfactory outcomes in the treatment of PPF of the distal femur in the aged patients. As fixation with a single lateral femoral plate is suitable for most of the aged patients with PPF of the distal femur, it can be used as the first choice. Fixation with dual plates can provide stronger stability, but its indications should be strictly controlled.

Result Analysis
Print
Save
E-mail