1.Application of PET-LINAC in Biology-guided Radiotherapy.
Xin YANG ; Wei ZHAO ; Xinzhi TIAN ; Jun CAI ; Siwei XIE ; Qi LIU ; Hao PENG ; Qiyu PENG
Chinese Journal of Medical Instrumentation 2023;47(3):237-241
Biology-guided radiotherapy (BgRT) is a novel technique of external beam radiotherapy, combining positron emission tomography-computed tomography (PET-CT) with a linear accelerator (LINAC). The key innovation is to utilize PET signals from tracers in tumor tissues for real-time tracking and guiding beamlets. Compared with a traditional LINAC system, a BgRT system is more complex in hardware design, software algorithm, system integration and clinical workflow. RefleXion Medical has developed the world's first BgRT system. Nevertheless, its actively advertised function, PET-guided radiotherapy, is still in the research and development phase. In this review study, we presented a number of issues related to BgRT, including its technical advantages and potential challenges.
Positron Emission Tomography Computed Tomography
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Algorithms
;
Particle Accelerators
;
Biology
;
Radiotherapy, Image-Guided/methods*
;
Radiotherapy Dosage
2.Development of Practical Proton Therapy System Based on Clinical Needs.
Chinese Journal of Medical Instrumentation 2023;47(4):355-359
In recent years, proton therapy technology has developed rapidly, and the number of patients treated with proton therapy has gradually increased. However, the application of proton therapy technology was far from practical needs. Because of the shortage of resources and the high cost, proton therapy systems are not accessible and affordable for most patients. In order to change this situation, it is necessary to develop a new truly practical proton therapy system based on clinical needs. Conceptual design of a practical proton therapy system was proposed. Compared with the existing system, one feature of the newly designed system is to reduce the maximum energy of the proton beam to 175~200 MeV; another feature is the configuration of deluxe and economical treatment rooms, the deluxe room is equipped with a rotating gantry and a six-dimensional treatment bed, and the economical room is equipped with a horizontal fixed beam and a patient vertical rotating setup device. This design can not only reduce the cost of proton therapy system and equipment room construction, but also facilitate the hospital to choose the appropriate configuration, which will ultimately benefit more patients.
Humans
;
Proton Therapy
;
Radiotherapy Planning, Computer-Assisted
;
Hospitals
;
Radiotherapy Dosage
3.Progress in Development of Dose Verification System Software KylinRay-Dose4D.
Huaqing ZHENG ; Guangyao SUN ; Yun ZHAO ; Bo XIAO ; Jing JIA ; Tao HE ; Pengcheng LONG ; Liqin HU
Chinese Journal of Medical Instrumentation 2023;47(4):360-364
Advanced radiotherapy technology enables the dose to more accurately conform to the tumor target area of the patient, providing accurate treatment for the patient, but the gradient of the patient's radiation dose at the tumor edge is getting larger, which putting forward higher requirements for radiotherapy dose verification. The dose verification system software KylinRay-Dose4D can verify the patient's pre-treatment plan and the in vivo/on-line dose during the patient's treatment, providing important reference for the physicist to modify the radiotherapy plan and ensuring that the patient receives accurate treatment. This study introduces the overall design and key technologies of KylinRay-Dose4D, and tests the pre-treatment plan dose checking calculation and 2D/3D dose verification through clinical cases. The test results showed that the 2D/3D gamma pass rate (3 mm/3%) of KylinRay-Dose4D reconstructed dose compared with TPS plan dose and measured dose is larger than 95%, which indicating that the reconstructed dose of KylinRay-Dose4D meets the requirement of clinical application.
Humans
;
Radiotherapy Dosage
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Radiotherapy, Intensity-Modulated/methods*
;
Software
;
Neoplasms
;
Phantoms, Imaging
;
Radiometry/methods*
4.Feasibility Study of Beam Angle Optimization Based on Scripts in Automated-planning for Liver Cancer.
Han XIAO ; Yujie ZHANG ; Weixing JI ; Tingting LI ; Jianying ZHANG
Chinese Journal of Medical Instrumentation 2023;47(4):365-369
OBJECTIVE:
To study the feasibility and potential benefits of beam angle optimization (BAO) to automated planning in liver cancer.
METHODS:
An approach of beam angle sampling is proposed to implement BAO along with the module Auto-planning in treatment planning system (TPS) Pinnacle. An in-house developed plan quality metric (PQM) is taken as the preferred evaluating method during the sampling. The process is driven automatically by in-house made Pinnacle scripts both in sampling and scoring. In addition, dosimetry analysis and physician's opinion are also performed as the supplementary and compared with the result of PQM.
RESULTS:
It is revealed by the numerical analysis of PQM scores that only 15% patients whose superior trials evaluated by PQM are also the initial trials. Gantry optimization can bring benefit to plan quality along with auto-planning in liver cancer. Similar results are provided by both dose comparison and physician's opinion.
CONCLUSIONS
It is possible to introduce a full automated approach of beam angle optimization to automated planning process. The advantages of this procedure can be observed both in numerical analysis and physician's opinion.
Humans
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Feasibility Studies
;
Radiometry/methods*
;
Liver Neoplasms/radiotherapy*
;
Radiotherapy, Intensity-Modulated/methods*
;
Radiotherapy Dosage
5.Structural Design and Penumbra Analysis of Dynamic Multi-leaf Collimator Leaf End.
Jun LYU ; Liuli CHEN ; Ruijun WEN ; Pengcheng LONG ; Leiming SHANG ; Liqin HU
Chinese Journal of Medical Instrumentation 2023;47(4):377-382
Dynamic multi-leaf collimator, which has the function of radiation beam shaping, is a key executive component of tumor precise radiotherapy, and plays a core role in improving the accuracy, efficiency and quality of radiotherapy. A new type of collimator leaf end structure with circular arc and plane combination was studied, and collimator penumbra performance analysis model combining analytical expression and graphic analysis was developed. The influence of leaf end structure on penumbra was analyzed quantitatively, and a set of three-dimensional structure design of dynamic multi-leaf collimator was completed. The feasibility of the structural design and analysis model was verified through experimental measurements.
Humans
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Particle Accelerators
;
Neoplasms
;
Radiotherapy Dosage
6.Dosimetric Impact of Titanium Alloy Implant in Spinal IMRT Plan.
Xiaohui CHEN ; Anjie XU ; Jiayan CHEN ; Weigang HU ; Jiayuan PENG
Chinese Journal of Medical Instrumentation 2023;47(1):110-114
The purpose of this study is to establish and apply a correction method for titanium alloy implant in spinal IMRT plan, a corrected CT-density table was revised from normal CT-density table to include the density of titanium alloy implant. Dose distribution after and before correction were calculated and compared to evaluate the dose deviation. Plans were also copied to a spinal cancer simulation phantom. A titanium alloy fixation system for spine was implanted in this phantom. Plans were recalculated and compared with the measurement result. The result of this study shows that the max dose of spinal cord showed significant difference after correction, and the deviation between calculation results and measurement results was reduced after correction. The method for expanding the range CT-density table, which means that the density of titanium alloy was included, can reduce the error in calculation.
Radiotherapy, Intensity-Modulated/methods*
;
Titanium
;
Radiotherapy Dosage
;
Alloys
;
Radiometry/methods*
;
Radiotherapy Planning, Computer-Assisted/methods*
7.Analysis of Imaging Performance Standards of CBCT X-IGRT System Used in Radiotherapy.
Shibing XIE ; Peichen WANG ; Chunying JIAO ; Chengxin LIANG ; Xintao ZHANG ; Jiajie XIE
Chinese Journal of Medical Instrumentation 2023;47(6):608-611
This article briefly describes the imaging performance standards of the kilovolt X-ray image guidance system used in radiotherapy, analyzes the main aspects that should be considered in the image quality of X-IGRT system, and focuses on parameters that should be considered in the imaging performance evaluation criteria of the CBCT X-IGRT. The purpose is to sort out the imaging performance evaluation standards of kilovolt X-IGRT system, clarify the image quality requirements of X-IGRT equipment, and reach a consensus when evaluating the imaging performance of X-IGRT system.
Radiotherapy Planning, Computer-Assisted/methods*
;
Cone-Beam Computed Tomography/methods*
;
Spiral Cone-Beam Computed Tomography
;
Radiotherapy, Intensity-Modulated/methods*
;
Radiotherapy, Image-Guided/methods*
8.Convenient Approach to Improve Correlation between Geometry and Dosimetric Parameters for Automatic Segmentation in Radiotherapy.
Tingting LI ; Anning CAO ; Jianying ZHANG ; Xiurui MA ; Yujie ZHANG
Chinese Journal of Medical Instrumentation 2022;46(5):490-495
OBJECTIVE:
To design a series of geometric indexes, which can improve the correlation between geometric parameters and dosimetric parameters.
METHODS:
48 cases of upper abdomen were selected. Manual and automatic segmentation were performed for two organs at risk, which were stomach and duodenum. Three overlapping structures, which were the overlaps with target expanded by 5 mm, 10 mm and 20 mm, were generated for each organ at risk. The geometric parameters of overlapping structures were calculated. The relationship between these geometric parameters and the dosimetric parameters of organs was investigated.
RESULTS:
When the geometric parameters of overlapping structures related to the target expand 5 mm, 10 mm and 20 mm were larger than 0.4, 0.6 and 0.8 respectively, the maximum dose differences of manual and automatic segmentation were less than 3 Gy. For the case with no overlaps between the organs and the target expansions, the overlap structure corresponding to target expanding 20 mm were recommended for safety considerations.
CONCLUSIONS
For organs at risk in the upper abdomen, the overlapping geometric parameters were closely related to the maximum dose of organs. Overlapping geometric parameters could predict whether the difference of maximum dose caused by automaticsegmentation was clinically acceptable or not.
Organs at Risk
;
Radiometry
;
Radiotherapy Dosage
;
Radiotherapy Planning, Computer-Assisted
;
Radiotherapy, Intensity-Modulated
9.Automatic delineation of organ at risk in cervical cancer radiotherapy based on ensemble learning.
Tingting CHENG ; Zijian ZHANG ; Xin YANG ; Shanfu LU ; Dongdong QIAN ; Xianliang WANG ; Hong ZHU
Journal of Central South University(Medical Sciences) 2022;47(8):1058-1064
OBJECTIVES:
The automatic delineation of organs at risk (OARs) can help doctors make radiotherapy plans efficiently and accurately, and effectively improve the accuracy of radiotherapy and the therapeutic effect. Therefore, this study aims to propose an automatic delineation method for OARs in cervical cancer scenarios of both after-loading and external irradiation. At the same time, the similarity of OARs structure between different scenes is used to improve the segmentation accuracy of OARs in difficult segmentations.
METHODS:
Our ensemble model adopted the strategy of ensemble learning. The model obtained from the pre-training based on the after-loading and external irradiation was introduced into the integrated model as a feature extraction module. The data in different scenes were trained alternately, and the personalized features of the OARs within the model and the common features of the OARs between scenes were introduced. Computer tomography (CT) images for 84 cases of after-loading and 46 cases of external irradiation were collected as the train data set. Five-fold cross-validation was adopted to split training sets and test sets. The five-fold average dice similarity coefficient (DSC) served as the figure-of-merit in evaluating the segmentation model.
RESULTS:
The DSCs of the OARs (the rectum and bladder in the after-loading images and the bladder in the external irradiation images) were higher than 0.7. Compared with using an independent residual U-net (convolutional networks for biomedical image segmentation) model [residual U-net (Res-Unet)] delineate OARs, the proposed model can effectively improve the segmentation performance of difficult OARs (the sigmoid in the after-loading CT images and the rectum in the external irradiation images), and the DSCs were increased by more than 3%.
CONCLUSIONS
Comparing to the dedicated models, our ensemble model achieves the comparable result in segmentation of OARs for different treatment options in cervical cancer radiotherapy, which may be shorten time for doctors to sketch OARs and improve doctor's work efficiency.
Female
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Machine Learning
;
Organs at Risk/radiation effects*
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Uterine Cervical Neoplasms/radiotherapy*
10.Application of "kindergarten effect" in radiotherapy for children with tumor aged 3-5 years.
Yu-Fei WANG ; Guang-Li LIANG ; Wei WANG ; Cheng-Bin QU ; Chun-Yin LI ; Qing-Xin WANG
Chinese Journal of Contemporary Pediatrics 2022;24(6):631-634
OBJECTIVES:
To study the clinical application effect of "kindergarten effect" in radiotherapy for children with tumor based on the psychology of preschool children aged 3-5 years.
METHODS:
A total of 30 children, aged 3-5 years, who were admitted to the Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, from January 2020 to August 2021 were enrolled in this prospective study. The children were randomly divided into a control group and a test group, with 15 children in each group. The children in the test group were treated in "kindergarten mode", i.e., all children were treated together at a specified time and left together after all children completed treatment. Those in the control group were treated alternately with adult patients according to the treatment time based on the type of radiotherapy fixation device. The treatment compliance was evaluated for both groups, and the two groups were compared in terms of the setup errors in the superior-inferior (SI), left-right (LR), and anterior-posterior (AP) directions.
RESULTS:
Compared with the control group, the test group showed a significantly shorter time for finishing the treatment (P<0.05) and a significantly lower proportion of children with treatment interruption (P<0.05). Compared with the control group, the test group showed smaller mean errors in the SI, LR and AP directions after image-guided radiotherapy, with significant differences in the mean errors in the SI and LR directions (P<0.05).
CONCLUSIONS
With the application of the "kindergarten effect", most children can actively cooperate in radiotherapy, and it can also improve the accuracy and repeatability of positioning and help to achieve the desired treatment outcome.
Adult
;
Humans
;
Neoplasms/radiotherapy*
;
Prospective Studies
;
Radiotherapy Planning, Computer-Assisted

Result Analysis
Print
Save
E-mail