1.Effects of low-dose photodynamic therapy on the function of human adipose mesenchymal stem cells and its mechanism.
Yang YANG ; Lei LI ; Zeng Jun YANG ; Meng Xue ZHENG ; Wei Feng HE ; Rui YIN
Chinese Journal of Burns 2022;38(9):830-838
Objective: To investigate the effects of low-dose photodynamic therapy on the proliferation, regulation, and secretion functions of human adipose mesenchymal stem cells (ADSCs) and the related mechanism, so as to explore a new method for the repair of chronic wounds. Methods: The experimental research methods were adopted. From February to April 2021, 10 patients (5 males and 5 females, aged 23 to 47 years) who underwent cutaneous surgery in the Department of Dermatology of the First Affiliated Hospital of Army Medical University (the Third Military Medical University) donated postoperative waste adipose tissue. The cells were extracted from the adipose tissue and the phenotype was identified. Three batches of ADSCs were taken, with each batch of cells being divided into normal control group with conventional culture only, photosensitizer alone group with conventional culture after being treated with Hemoporfin, irradiation alone group with conventional culture after being treated with red light irradiation, and photosensitizer+irradiation group with conventional culture after being treated with Hemoporfin and red light irradiation, with sample number of 3 in each group. At culture hour of 24 after the treatment of the first and second batches of cells, the ADSC proliferation level was evaluated by 5-ethynyl-2'-deoxyuridine staining method and the migration percentage of HaCaT cells cocultured with ADSCs was detected by Transwell experiment, respectively. On culture day of 7 after the treatment of the third batch of cells, the extracellular matrix protein expression of ADSCs was detected by immunofluorescence method. The ADSCs were divided into 0 min post-photodynamic therapy group, 15 min post-photodynamic therapy group, 30 min post-photodynamic therapy group, and 60 min post-photodynamic therapy group, with 3 wells in each group. Western blotting was used to detect the protein expressions and calculate the phosphorylated mammalian target of rapamycin complex (p-mTOR)/mammalian target of rapamycin (mTOR), phosphorylated p70 ribosomal protein S6 kinase (p-p70 S6K)/p70 ribosomal protein S6 kinase (p70 S6K) ratio at the corresponding time points after photodynamic therapy. Two batches of ADSCs were taken, and each batch was divided into normal control group, photodynamic therapy alone group, and photodynamic therapy+rapamycin group, with 3 wells in each group. At culture minute of 15 after the treatment, p-mTOR/mTOR and p-p70 S6K/p70 S6K ratios of cells from the first batch were calculated and detected as before. On culture day of 7 after the treatment, extracellular matrix protein expression of cells from the second batch was detected as before. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: After 12 d of culture, the cells were verified as ADSCs. At culture hour of 24 after the treatment, the ADSC proliferation level ((4.0±1.0)% and (4.1±0.4)%, respectively) and HaCaT cell migration percentages (1.17±0.14 and 1.13±0.12, respectively) in photosensitizer alone group and irradiation alone group were similar to those of normal control group ((3.7±0.6)% and 1.00±0.16, respectively, P>0.05), and were significantly lower than those of photosensitizer+irradiation group ((34.2±7.0)% and 2.55±0.13, respectively, P<0.01). On culture day of 7 after the treatment, compared with those in normal control group, the expression of collagen Ⅲ in ADSCs of photosensitizer alone group was significantly increased (P<0.05), and the expressions of collagen Ⅰ and collagen Ⅲ in ADSCs of irradiation alone group were significantly increased (P<0.01). Compared with those in photosensitizer alone group and irradiation alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photosensitizer+irradiation group were significantly increased (P<0.01). Compared with those in 0 min post-photodynamic therapy group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in 15 min post-photodynamic therapy group were significantly increased (P<0.01), the ratios of p-p70 S6K/p70 S6K of ADSCs in 30 min post-photodynamic therapy group and 60 min post-photodynamic therapy group were both significantly increased (P<0.01). At culture minute of 15 after the treatment, compared with those in normal control group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy alone group were significantly increased (P<0.05 or P<0.01). Compared with those in photodynamic therapy alone group, the ratios of p-mTOR/mTOR and p-p70 S6K/p70 S6K of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.05). On culture day of 7 after the treatment, compared with those in normal control group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy alone group were significantly increased (P<0.01). Compared with those in photodynamic therapy alone group, the expressions of collagen Ⅰ, collagen Ⅲ, and fibronectin of ADSCs in photodynamic therapy+rapamycin group were significantly decreased (P<0.01). Conclusions: Low-dose photodynamic therapy can promote the proliferation of ADSCs, improve the ability of ADSCs to regulate the migration of HaCaT cells, and enhance the secretion of extracellular matrix protein by rapidly activating mTOR signaling pathway.
Adipose Tissue
;
Female
;
Fibronectins
;
Humans
;
Male
;
Mesenchymal Stem Cells
;
Photochemotherapy
;
Photosensitizing Agents/pharmacology*
;
Sirolimus/pharmacology*
;
TOR Serine-Threonine Kinases
2.Computer simulation of molecular docking between methylene blue and some proteins of Porphyromonas gingivalis.
Lin Tian YUAN ; Li Sha MA ; Run Yuan LIU ; Wei QI ; Lu Dan ZHANG ; Gui Yan WANG ; Yu Guang WANG
Journal of Peking University(Health Sciences) 2022;54(1):23-30
OBJECTIVE:
To study the binding target of photosensitizer and bacteria in antimicrobial photodynamic therapy with computer-simulated target prediction and molecular docking research methods and to calculate the binding energy.
METHODS:
The protein names of Porphyromonas gingivalis (Pg) were obtained and summarized in Uniprot database and RCSB PDB database; the structure diagrams of methy-lene blue were screened in SciFinder database, PubChem database, ChemSpider database, and Chemical Book, and ChemBioDraw software was used to draw and confirm the three-dimensional structure for target prediction and Cytoscape software was used to build a visual network diagram; a protein interaction network was searched and built between the methylene blue target and the common target of Pg in the String database; then we selected FimA, Mfa4, RgpB, and Kgp K1 proteins, used AutoDock software to calculate the docking energy of methylene blue and the above-mentioned proteins and performed molecular docking.
RESULTS:
The target prediction results showed that there were 19 common targets between the 268 potential targets of methylene blue and 1 865 Pg proteins. The 19 targets were: groS, radA, rplA, dps, fabH, pyrG, thyA, panC, RHO, frdA, ileS, bioA, def, ddl, TPR, murA, lepB, cobT, and gyrB. The results of the molecular docking showed that methylene blue could bind to 9 sites of FimA protein, with a binding energy of -6.26 kcal/mol; with 4 sites of Mfa4 protein and hydrogen bond formation site GLU47, and the binding energy of -5.91 kcal/mol, the binding energy of LYS80, the hydrogen bond forming site of RgpB protein, was -5.14 kcal/mol, and the binding energy of 6 sites of Kgp K1 protein and the hydrogen bond forming site GLY1114 of -5.07 kcal/mol.
CONCLUSION
Computer simulation of target prediction and molecular docking technology can initially reveal the binding, degree of binding and binding sites of methylene blue and Pg proteins. This method provides a reference for future research on the screening of binding sites of photosensitizers to cells and bacteria.
Computer Simulation
;
Methylene Blue
;
Molecular Docking Simulation
;
Photosensitizing Agents
;
Porphyromonas gingivalis
3.Advances of using photoimmunotherapy for anticancer treatment.
Fang LI ; Chengqiong MAO ; Junbo XIN ; Qin SHI ; Xuan WU
Chinese Journal of Biotechnology 2021;37(9):3088-3100
Photoimmunotherapy (PIT) is an emerging tumor-targeted phototherapy that combines the tumor specificity of monoclonal antibodies with the phototoxicity of light absorbers to rapidly and selectively induce the immunogenic death of target tumor cells. PIT has minimal side effects due to its high specificity. The immunogenic cell death induced by PIT results in rapid maturation of immature dendritic cells proximal to dying tumor cells. Subsequently, the mature dendritic cells present the tumor antigens to CD8+ T cells and induce their activation and proliferation, thus enhancing the antitumor immune response of the host. PIT can also improve the anticancer efficacy by enhancing the penetration of nanomedicines into tumor tissues. In view of the excellent application prospects of PIT, this review summarizes the advances in the immune activation mechanism of PIT, the superenhanced permeability and retention effect, and the new strategies for combinatory therapy, providing references for future research and clinical translation.
Antibodies, Monoclonal/therapeutic use*
;
Humans
;
Immunotherapy
;
Neoplasms/therapy*
;
Photosensitizing Agents
;
Phototherapy
4.The effect of parasitic ions on riboflavin permeability and cross-linking effectiveness in iontophoresis-assisted scleral cross-linking.
Jing WANG ; Xiaona LI ; Zhipeng GAO ; Lingfeng CHEN ; Weiyi CHEN ; Tingting WU
Journal of Biomedical Engineering 2021;38(5):869-876
The effect of parasitic ions on the results of ultraviolet A (UVA) cross-linking in iontophoresis was still not clear. In this work, the porcine sclera was cross-linked by riboflavin lactate Ringer's solution (group A) and riboflavin normal saline (group B)
Animals
;
Collagen
;
Cross-Linking Reagents
;
Ions
;
Iontophoresis
;
Permeability
;
Photosensitizing Agents/pharmacology*
;
Riboflavin
;
Sclera
;
Swine
;
Ultraviolet Rays
5.Finite element analysis of the effect of local posterior sclera collagen cross-linking on eyeball shape.
Lingling YAN ; Xiaona LI ; Weiyi CHEN ; Zhipeng GAO ; Tao JIN
Journal of Biomedical Engineering 2021;38(6):1103-1110
China is the country with high incidence of high myopia in the world. High myopia can cause severe vision impairment. So far, there is no effective treatment for high myopia in clinic. Scleral collagen cross-linking surgery has been proven to be effective in preventing animal eye axial elongation
Animals
;
Collagen
;
Cross-Linking Reagents
;
Finite Element Analysis
;
Photosensitizing Agents
;
Riboflavin
;
Sclera
6.Progress on photodynamic therapy in oral diseases.
Shen-Sui LI ; Chen-Zhou WU ; Long-Jiang LI
West China Journal of Stomatology 2021;39(2):215-220
Photodynamic therapy (PDT) has developed rapidly in basic and clinical research, and its therapeutic prospects have received increasing attention. PDT has the advantages of minimally invasive, low toxicity, high selectivity, good reproducibility, protection of appearance and vital organ function, and has become a treatment. With the development of medicine, the field of application of PDT becomes more wildly, and brings a new direction for the treatment of oral diseases. This article reviews the basic principles, treatment elements and research results of PDT in the treatment of oral diseases.
Humans
;
Mouth Diseases/drug therapy*
;
Photochemotherapy
;
Photosensitizing Agents/therapeutic use*
;
Reproducibility of Results
7.Effect of 5-aminolevulinic Acid Photodynamics Therapy on Biofilm of .
Yuzhen LIU ; Rong ZENG ; Zhimin DUAN ; Haoxiang XU ; Qiuju WU ; Qing CHEN ; Tong LIN ; Min LI
Acta Academiae Medicinae Sinicae 2020;42(3):283-288
To investigate the effect of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on () biofilm. biofilms were constructed on a cell slide and treated with ALA-PDT.According to different light doses,the biofilms were divided into six groups:ALA-PDT group [ALA-PDT1 (50 J/cm),ALA-PDT2 group (100 J/cm),ALA-PDT3 group (200 J/cm)],ALA-only group (ALA group),light-only group (LED),and a negative control group (ALA-PDT-group).The biofilm structure and the ratio of the dead bacteria/live bacteria were observed using a laser confocal microscope (CLSM).Biofilm viability was measured using the XTT assay. CLSM showed that the biofilm structures of ALA group and LED group were not significantly different from that of ALA-PDT-group,whereas the biofilm structure was more seriously damaged in ALA-PDT1 group,ALA-PDT2 group,and ALA-PDT3 group than in the ALA-PDT-group.The ratios of the dead/live bacteria in ALA-PDT-group,ALA group,LED group,ALA-PDT1 group,ALA-PDT2 group,and ALA-PDT3 group were 0.350±0.033, 0.305±0.046, 0.330±0.032, 1.525±0.439, 2.293±0.148 and 3.092±0.189,respectively.ALA group(=0.003, =1.000)and LED group(=-0.025, =1.000)did not significantly differ from the ALA-PDT-group.However,the ratio of dead/live bacteria in ALA-PDT-group was significantly lower than those in ALA-PDT1 group (=-0.162, <0.001),ALA-PDT2 group (=-0.254, <0.001),and ALA-PDT3 group (=-0.352, <0.001).The values of the XTT assay were were 0.462±0.028,0.465±0.044,0.437±0.047,0.301±0.040,0.207±0.001,and 0.110±0.007,respectively,in ALA-PDT-group,ALA group,LED group,ALA-PDT1 group,ALA-PDT2 group,and ALA-PDT3 group.Although the values of XTT assay in ALA(=-0.044, =1.000)and LED groups (=-0.020, =1.000)did not significantly differ from that in ALA-PDT-group,it was significantly higher in ALA-PDT-group than in ALA-PDT1 group (=1.175, <0.001),ALA-PDT2 group (=1.942, <0.001),and ALA-PDT3 group (=-0.352, =2.742, <0.001). ALA-PDT has an inhibitory effect on biofilm.ALA-PDT destroys biofilm structure and inhibits biofilm viability.
Aminolevulinic Acid
;
Biofilms
;
Photochemotherapy
;
Photosensitizing Agents
;
Propionibacterium acnes
8.Effects of Shengmai Jianghuang San on intestinal flora in nude mice with radio resistant cells of nasopharyngeal carcinoma.
Jia-Bin YANG ; Dao-Qi ZHU ; Meng SHAO ; Ai-Wu LI ; Zhao-Ru LIU ; Rui-Jiao GAO ; Shi-Ya LIU ; Dan-Dan LOU ; Ying LYU ; Qin FAN
China Journal of Chinese Materia Medica 2019;44(3):553-558
Modern pharmacological studies have shown that Shengmai San has the effects of enhancing immunity and improving blood circulation, and Curcumae Longae Rhizoma(Jianghuang) has anti-inflammatory, anti-cancer, anti-oxidation and other functions. Shengmai San combined with Jianghuang is a new research direction in the study of anti-tumor of traditional Chinese medicines. The main treatment for nasopharyngeal carcinoma is radiation therapy, but radiation therapy can cause a variety of side effects, and it also changes the composition of the intestinal flora. In this study, the 16 s rDNA sequencing platform was used to perform macro-sequence sequencing of the intestinal flora samples of nude mice bearing the veins of Shengmai Jianghuang San, and then the results of intestinal flora data were analyzed to investigate the effect of Shengmai Jianghuang San on tumors. The results showed that Shengmai Jianghuang San combined with irradiation could enhance the therapeutic effect of tumor treatment. Radiation therapy would reduce the total number and diversity of intestinal flora in nude mice, and also change the structure of the flora. Shengmai Jianghuang San could protect the diversity of colonies, and also partially restore the colony imbalance caused by irradiation. This study provides a research idea for Shengmai Jianghuang San as a sensitizing adjuvant for radiotherapy of nasopharyngeal carcinoma.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Gastrointestinal Microbiome
;
drug effects
;
Mice
;
Mice, Nude
;
Nasopharyngeal Carcinoma
;
radiotherapy
;
Radiation Tolerance
;
Radiation-Sensitizing Agents
;
pharmacology
9.Photodynamic therapy guidelines for the management of oral leucoplakia.
Qianming CHEN ; Hongxia DAN ; Fan TANG ; Jiongke WANG ; Xiaoying LI ; Junxin CHENG ; Hang ZHAO ; Xin ZENG
International Journal of Oral Science 2019;11(2):14-14
With recent developments in photosensitizers and light delivery systems, topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) has become the fourth alternative therapeutic approach in the management of oral leucoplakia (OLK) due to its minimally invasive nature, efficacy, and low risk of systemic side effects and disfigurement. This report presents step-by-step guidelines for applying topical ALA-PDT in the management of OLK based on both the clinical experience of the authors and a systematic review of the current literature. Studies using protocols with standardized parameters and randomized clinical trials at multiple centres with adequate sample sizes and both interim and long-term follow-ups are needed before universally applicable guidelines can be produced in this field.
Aminolevulinic Acid
;
administration & dosage
;
therapeutic use
;
Humans
;
Leukoplakia, Oral
;
therapy
;
Photochemotherapy
;
methods
;
Photosensitizing Agents
;
administration & dosage
;
therapeutic use
;
Practice Guidelines as Topic
10.Current research analysis and prospects on sensitization effect of artesunate on anti-cancer radiotherapy and chemotherapy.
Wen-Jia CHEN ; Xia MAO ; Yan-Qiong ZHANG ; Na LIN
China Journal of Chinese Materia Medica 2019;44(23):5231-5239
The wide application of artemisinins in the treatment of multiple cancers reflects the advantages of traditional Chinese medicine used in this field. The existing basic and clinical studies have revealed that artesunate can effectively suppress the malignant progression of breast cancer,colon cancer,leukemia,melanoma,ovarian cancer,prostate cancer,kidney cancer and various tumors in central nervous system. The pharmacological mechanisms of artesunate against cancers are reflected in many aspects,such as inhibiting tumor cell proliferation,invasion and metastasis,inducing tumor cell apoptosis and autophagy,regulating cell signal transduction and inhibiting tumor angiogenesis. Meanwhile,growing experimental evidences have indicated that artesunate has been used for the sensitization of radiotherapy with X-ray,β-ray,γ-ray and~(60)Co γ-ray,as well as chemotherapy with cisplatin,carboplatin and doxorubicin.This review collected basic and clinical studies on the sensitization effect of artesunate on anti-cancer radiotherapy and chemotherapy published on PubMed and CNKI during April 2000 and February 2019,and summarized the clinical positioning and application of artesunate,with the aim to provide a more comprehensive explanation on the sensitization effect of artesunate on anti-cancer radiotherapy and chemotherapy,and offer the inspiration and ideas for the development of radiotherapy and chemotherapy sensitizers,as well as cancer resistance reversal agents.
Artesunate/therapeutic use*
;
Carboplatin/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cisplatin/therapeutic use*
;
Doxorubicin/therapeutic use*
;
Humans
;
Neoplasms/radiotherapy*
;
Radiation-Sensitizing Agents/therapeutic use*

Result Analysis
Print
Save
E-mail