1.Investigation of androgen receptor-dependent alternative splicing has identified a unique subtype of lethal prostate cancer.
Sean SELTZER ; Paresa N GIANNOPOULOS ; Tarek A BISMAR ; Mark TRIFIRO ; Miltiadis PALIOURAS
Asian Journal of Andrology 2023;25(3):296-308
A complete proteomics study characterizing active androgen receptor (AR) complexes in prostate cancer (PCa) cells identified a diversity of protein interactors with tumorigenic annotations, including known RNA splicing factors. Thus, we chose to further investigate the functional role of AR-mediated alternative RNA splicing in PCa disease progression. We selected two AR-interacting RNA splicing factors, Src associated in mitosis of 68 kDa (SAM68) and DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) to examine their associative roles in AR-dependent alternative RNA splicing. To assess the true physiological role of AR in alternative RNA splicing, we assessed splicing profiles of LNCaP PCa cells using exon microarrays and correlated the results to PCa clinical datasets. As a result, we were able to highlight alternative splicing events of clinical significance. Initial use of exon-mini gene cassettes illustrated hormone-dependent AR-mediated exon-inclusion splicing events with SAM68 or exon-exclusion splicing events with DDX5 overexpression. The physiological significance in PCa was investigated through the application of clinical exon array analysis, where we identified exon-gene sets that were able to delineate aggressive disease progression profiles and predict patient disease-free outcomes independently of pathological clinical criteria. Using a clinical dataset with patients categorized as prostate cancer-specific death (PCSD), these exon gene sets further identified a select group of patients with extremely poor disease-free outcomes. Overall, these results strongly suggest a nonclassical role of AR in mediating robust alternative RNA splicing in PCa. Moreover, AR-mediated alternative spicing contributes to aggressive PCa progression, where we identified a new subtype of lethal PCa defined by AR-dependent alternative splicing.
Humans
;
Male
;
Alternative Splicing
;
Cell Line, Tumor
;
DEAD-box RNA Helicases/metabolism*
;
Disease Progression
;
Gene Expression Regulation, Neoplastic
;
Prostatic Neoplasms/pathology*
;
Receptors, Androgen/metabolism*
;
RNA Splicing Factors/metabolism*
4.Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations.
Peishan WANG ; Qiao WEI ; Hongfu LI ; Zhi-Ying WU
Chinese Medical Journal 2023;136(2):176-183
BACKGROUND:
Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations.
METHODS:
Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review.
RESULTS:
A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar.
CONCLUSION
Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Humans
;
Amyotrophic Lateral Sclerosis/genetics*
;
DNA Helicases/genetics*
;
Genetic Association Studies
;
Multifunctional Enzymes/genetics*
;
Mutation/genetics*
;
RNA Helicases/genetics*
;
RNA-Binding Protein FUS/genetics*
;
Serine C-Palmitoyltransferase/genetics*
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
5.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation
6.Construction and clinical evaluation of N6-methyladenosine risk signature of YTHDC2, IGF2BP2, and HNRNPC in head and neck squamous cell carcinoma.
Qiangwei YUE ; Le XU ; Dongsheng ZHANG
West China Journal of Stomatology 2022;40(6):704-709
OBJECTIVES:
This work aimed to construct N6-methyladenosine (m6A) regulator-based prognostic signature and evaluate the prognostic value and the intervention on tumor immune microenvironment of this m6A risk signature.
METHODS:
Using transcriptome and clinical data of head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA), we profiled m6A regulators and constructed an m6A risk signature. The relationship between m6A modulation and immune function was studied by differential gene expression, cell type enrichment, and correlation analyses.
RESULTS:
Fifteen m6A regulators had aberrant expression in HNSCC. A three-gene m6A prognostic signature (i.e., YTHDC2, IGF2BP2, and HNRNPC) was constructed and identified as an independent prognostic indicator for HNSCC. The m6A regulator signature-based high-risk group revealed pro-tumoral immune microenvironment due to the dysregulation of immune-related gene expression, abnormal enrichment of multiple immunocytes, and production of immunoregulatory factors.
CONCLUSIONS
This comprehensive analysis of m6A regulators and tumor immune landscape in HNSCC revealed that the m6A signature of YTHDC2, IGF2BP2, and HNRNPC could serve as a promising biomarker for monitoring HNSCC development and may be a potential target for tumor therapy in the future.
Humans
;
Squamous Cell Carcinoma of Head and Neck/genetics*
;
Gene Expression Regulation, Neoplastic
;
Prognosis
;
Head and Neck Neoplasms/genetics*
;
Tumor Microenvironment/genetics*
;
RNA-Binding Proteins/genetics*
;
Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics*
;
RNA Helicases
7.Analysis of a child with X-linked mental retardation due to a de novo variant of DDX3X gene.
Qiong WANG ; Ying YANG ; Lili LIU ; Xiaoling TIE ; Haihong LEI ; Liyu ZHANG ; Fengyu CHE
Chinese Journal of Medical Genetics 2022;39(10):1111-1115
OBJECTIVE:
To analyze the clinical characteristics and genetic variant of a child featuring X-linked mental retardation.
METHODS:
Whole exome sequencing and Sanger sequencing were used for the detection of variant and pedigree validation, respectively. Clinical manifestation of patients with DDX3X gene variants were also reviewed.
RESULTS:
The child was found to harbor a heterozygous NM_001193416.3: c.1332_1333delCT (p.Leu445Serfs*19) variant of the DDX3X gene. The same variant was not found in either of her parents.
CONCLUSION
The child was diagnosed with X-linked mental retardation due to variant of the DDX3X gene. Above finding has enriched the spectrum of DDX3X gene variants and provided a basis for clinical diagnosis and prenatal diagnosis for this pedigrees.
Child
;
DEAD-box RNA Helicases/genetics*
;
Female
;
Heterozygote
;
Humans
;
Intellectual Disability/genetics*
;
Mental Retardation, X-Linked/genetics*
;
Mutation
;
Pedigree
;
Pregnancy
;
Exome Sequencing
8.A multiplex PCR-based sensitive and specific method for detecting Y chromosome material in patients with Turner syndrome.
Qiang ZHAO ; Shuxiong CHEN ; Hailin SUN ; Wanling YANG ; Bo BAN
Chinese Journal of Medical Genetics 2022;39(11):1216-1223
OBJECTIVE:
To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome.
METHODS:
Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome.
RESULTS:
The optimization results of the multiplex PCR reaction system (50 μL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 μM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients.
CONCLUSION
This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.
Humans
;
Male
;
Turner Syndrome/genetics*
;
Multiplex Polymerase Chain Reaction
;
Y Chromosome
;
Karyotyping
;
DNA Primers
;
DNA
;
Chromosomes, Human, Y/genetics*
;
Transducin/genetics*
;
Minor Histocompatibility Antigens
;
DEAD-box RNA Helicases/genetics*
9.The Latest Research Progress on Myelodysplastic Syndrome Patient-derived Mesenchymal Stem Cell--Review.
Fan LI ; Hai-Ping HE ; Li-Hua ZHANG ; Xiao-Sui LING
Journal of Experimental Hematology 2022;30(4):1286-1290
Myelodysplastic syndrome (MDS) are a heterogeneous group of hematological malignancies. Currently, in addition to demethylated chemotherapy and hematopoietic stem cell transplantation, MDS patient-derived mesenchymal stem cells (MDS-MSC) play an important role in understanding the pathogenesis of MDS and related therapeutic targets. For example, abnormal expression of DICER1 gene, abnormalities of PI3K/AKT and Wnt/β-catenin signaling pathways provide new therapeutic targets for MDS. In addition, MDS-MSC is also affected by abnormal microenvironment of the body, such as inflammatory factor S100A9, as well as hypercoagulation and iron overload. In this review, genes, signaling pathways, cytokines, hematopoietic microenvironment, and the effect of therapeutic drugs for MDS-MSC were briefly summarized.
Cytokines/metabolism*
;
DEAD-box RNA Helicases/metabolism*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Mesenchymal Stem Cells
;
Myelodysplastic Syndromes/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Ribonuclease III/metabolism*
;
Tumor Microenvironment
10.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Activating Transcription Factor 4/genetics*
;
Adenocarcinoma of Lung
;
Amino Acids
;
Cell Proliferation
;
Eukaryotic Initiation Factor-2
;
Humans
;
Lung Neoplasms
;
RNA Helicases/metabolism*
;
RNA, Messenger/metabolism*
;
Trans-Activators/metabolism*

Result Analysis
Print
Save
E-mail