1.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation
2.Preparation of luciferase-expressing mRNA and expression characteristics of mRNA delivered by electroporation in vivo.
Lingjiang FAN ; Keru ZHOU ; Yanguang LIU ; Guiqin WANG ; Ting SHI ; Yihong HU ; Daixi LI
Chinese Journal of Biotechnology 2022;38(9):3379-3389
In this study, we aimed to construct a non-replication mRNA platform and explore the side effects of electroporation-mediated delivery of mRNA on the mice as well as the expression features of the mRNA. With luciferase gene as a marker, in vitro transcription with T7 RNA polymerase was carried out for the synthesis of luciferase-expressed mRNA, followed by enzymatic capping and tailing. The mRNA was delivered in vivo by electroporation via an in vivo gene delivery system, and the expression intensity and duration of luciferase in mice were observed via an in vivo imaging system. The results demonstrated that the mRNA transcripts were successfully expressed both in vitro and in vivo. The electroporation-mediated delivery of mRNA had no obvious side effects on the mice. Luciferase was expressed successfully in all the mRNA-transduced mice, while the expression intensity and duration varied among individuals. Overall, the expression level peaked on the first day after electroporation and rapidly declined on the fourth day. This study is of great importance for the construction of non-replication mRNAs and their application in vaccine or antitumor drug development.
Animals
;
Electroporation/methods*
;
Gene Transfer Techniques
;
Luciferases/metabolism*
;
Mice
;
RNA, Messenger/genetics*
3.Mechanism of Cordyceps militaris against non-small cell lung cancer: based on serum metabolomics.
Ying-Ying LU ; Xiao HUANG ; Zi-Chen LUO ; Ming-Yuan QI ; Jin-Jun SHAN ; Wen ZHANG ; Liu-Qing DI
China Journal of Chinese Materia Medica 2022;47(18):5032-5039
This study investigated the potential mechanism of Cordyceps militaris(CM) against non-small cell lung cancer(NSCLC) based on serum untargeted metabolomics. Specifically, Balb/c nude mice were used to generate the human lung cancer A549 xenograft mouse model. The tumor volume, tumor weight, and tumor inhibition rate in mice in the model, cisplatin, Cordyceps(low-, medium-, and high-dose), and CM(low-, medium-, and high-dose) groups were compared to evaluate the influence of CM on lung cancer. Gas chromatography-mass spectrometry(GC-MS) was used for the analysis of mouse serum, SIMCA 13.0 for the compa-rison of metabolic profiles, and MetaboAnalyst 5.0 for the analysis of metabolic pathways. According to the pharmacodynamic data, the tumor volume and tumor weight of mice in high-dose CM group and cisplatin group decreased as compared with those in the model group(P<0.05 or P<0.01). The results of serum metabolomics showed that the metabolic profiles of the model group were significantly different from those of the high-dose CM group, and the content of endogenous metabolites was adjusted to different degrees. A total of 42 differential metabolites and 7 differential metabolic pathways were identified. In conclusion, CM could significantly inhibit the tumor growth of lung cancer xenograft mice. The mechanism is the likelihood that it influences the aminoacyl-tRNA biosynthesis, the metabolism of D-glutamine and D-glutamate, metabolism of alanine, aspartate, and glutamate, metabolism of glyoxylate and dicarboxylic acid, biosynthesis of phenylalanine, tyrosine, and tryptophan, arginine biosynthesis as well as nitrogen metabolism. This study elucidated the underlying mechanism of CM against NSCLC from the point of metabolites. The results would lay a foundation for the anticancer research and clinical application of CM.
Alanine/metabolism*
;
Animals
;
Arginine/metabolism*
;
Aspartic Acid
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Cisplatin/pharmacology*
;
Cordyceps
;
Glutamic Acid
;
Glutamine
;
Glyoxylates/metabolism*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Metabolomics/methods*
;
Mice
;
Mice, Nude
;
Nitrogen/metabolism*
;
Phenylalanine/metabolism*
;
RNA, Transfer/metabolism*
;
Tryptophan/metabolism*
;
Tyrosine/metabolism*
4.Overexpression of a leucine transfer RNA gene tL(CAA)K improves the acetic acid tolerance of Saccharomyces cerevisiae.
Shuyi ZHAO ; Bing YUAN ; Xueqing WANG ; Hongqi CHEN ; Xinqing ZHAO ; Fengwu BAI
Chinese Journal of Biotechnology 2021;37(12):4293-4302
Acetic acid is a common inhibitor present in lignocellulosic hydrolysate. Development of acetic acid tolerant strains may improve the production of biofuels and bio-based chemicals using lignocellulosic biomass as raw materials. Current studies on stress tolerance of yeast Saccharomyces cerevisiae have mainly focused on transcription control, but the role of transfer RNA (tRNA) was rarely investigated. We found that some tRNA genes showed elevated transcription levels in a stress tolerant yeast strain. In this study, we further investigated the effects of overexpressing an arginine transfer RNA gene tR(ACG)D and a leucine transfer RNA gene tL(CAA)K on cell growth and ethanol production of S. cerevisiae BY4741 under acetic acid stress. The tL(CAA)K overexpression strain showed a better growth and a 29.41% higher ethanol productivity than that of the control strain. However, overexpression of tR(ACG)D showed negative influence on cell growth and ethanol production. Further studies revealed that the transcriptional levels of HAA1, MSN2, and MSN4, which encode transcription regulators related to stress tolerance, were up-regulated in tL(CAA)K overexpressed strain. This study provides an alternative strategy to develop robust yeast strains for cellulosic biorefinery, and also provides a basis for investigating how yeast stress tolerance is regulated by tRNA genes.
Acetic Acid
;
DNA-Binding Proteins/metabolism*
;
Fermentation
;
Leucine
;
RNA, Transfer/genetics*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Transcription Factors
5.SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs.
Junchao SHI ; Eun-A KO ; Kenton M SANDERS ; Qi CHEN ; Tong ZHOU
Genomics, Proteomics & Bioinformatics 2018;16(2):144-151
High-throughput RNA-seq has revolutionized the process of small RNA (sRNA) discovery, leading to a rapid expansion of sRNA categories. In addition to the previously well-characterized sRNAs such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNA (snoRNAs), recent emerging studies have spotlighted on tRNA-derived sRNAs (tsRNAs) and rRNA-derived sRNAs (rsRNAs) as new categories of sRNAs that bear versatile functions. Since existing software and pipelines for sRNA annotation are mostly focused on analyzing miRNAs or piRNAs, here we developed the sRNA annotation pipelineoptimized for rRNA- and tRNA-derived sRNAs (SPORTS1.0). SPORTS1.0 is optimized for analyzing tsRNAs and rsRNAs from sRNA-seq data, in addition to its capacity to annotate canonical sRNAs such as miRNAs and piRNAs. Moreover, SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches within sRNAs. SPORTS1.0 is precompiled to annotate sRNAs for a wide range of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species for analyses could be readily expanded upon end users' input. For demonstration, by analyzing sRNA datasets using SPORTS1.0, we reveal that distinct signatures are present in tsRNAs and rsRNAs from different mouse cell types. We also find that compared to other sRNA species, tsRNAs bear the highest mismatch rate, which is consistent with their highly modified nature. SPORTS1.0 is an open-source software and can be publically accessed at https://github.com/junchaoshi/sports1.0.
Animals
;
Gene Expression Profiling
;
High-Throughput Nucleotide Sequencing
;
Mice
;
MicroRNAs
;
chemistry
;
metabolism
;
Molecular Sequence Annotation
;
RNA, Ribosomal
;
chemistry
;
metabolism
;
RNA, Small Interfering
;
chemistry
;
metabolism
;
RNA, Small Untranslated
;
chemistry
;
metabolism
;
RNA, Transfer
;
chemistry
;
metabolism
;
Sequence Analysis, RNA
;
methods
;
Software
6.Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Ying SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Zhen ZHANG ; Yuxi CHEN ; Chenhui DING ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2017;8(8):601-611
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
metabolism
;
Base Sequence
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cytidine
;
genetics
;
metabolism
;
Embryo Transfer
;
Embryo, Mammalian
;
Endonucleases
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
HEK293 Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microinjections
;
Plasmids
;
chemistry
;
metabolism
;
Point Mutation
;
RNA, Guide
;
genetics
;
metabolism
;
Thymidine
;
genetics
;
metabolism
;
Zygote
;
growth & development
;
metabolism
;
transplantation
7.Significance of PLSCR1 in Matrine Induced Differentiation of ATRA Resistant APL Cells.
Di-jiong WU ; Ting-ting LIU ; Qi-hao ZHOU ; Jie SUN ; Ke-ding SHAO ; Bao-dong YE ; Yu-hong ZHOU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(11):1345-1350
OBJECTIVETo observe the expression of phospholipid scramblase 1 (PLSCR1) in matrine (MAT) induced differentiation of all-trans retinoic acid (ATRA) resistant acute promyelocytic leukemia (APL) cells, and to explore its correlation to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signal pathway.
METHODSNB4 (an APL cell line sensitive to ATRA) and NB4-R1 (a resistant strain of ATRA) were observed as subjects in this study. Effects of combined treatment of 0.1 mmol/L MAT and 1 [mol/L ATRA on the differentiation of two cell lines were detected using nitroblue tetrazolium (NBT) reduction test and flow cytometry (CD11b). Expressions of PML/RARot and PLSCR1 protein/gene were detected using Western blot and Real-time fluorescence quantitative PCR assay. Meanwhile, H89, PKA antagonist, was used to observe cell differentiation antigen and changes of aforesaid proteins and genes.
RESULTSMAT combined ATRA could significantly elevate positive rates of NBT and CD11 b in NB4-R1 cells, and significantly down-regulate the expression of PML/RARapha-fusion protein/gene (P < 0.05, P < 0.01). ATRA used alone could obviously enhance the expression of PLSCRI in NB4 cells at protein and mRNA levels (P < 0.01). But the expression of PLSCR1 was up-regulated in NB4-R1 cells, but with statistical.difference only at the protein level (P <0. 01). In combination of MAT, PLSCR1 protein expression was further elevated in the two cell lines (P < 0.01). Besides, there was statistical difference in mRNA expressions in NB4-R1 cells (P < 0.05). All these actions could be reversed by treatment of 10 micromol/L H89 (P < 0.05, P < 0.01).
CONCLUSIONMAT combined ATRA could significantly induce the differentiation of NB4-R1 cells, and inhibit the expression of PML/RARalpha fusion gene/protein, which might be associated with up-regulating PLSCR1 expression.
Alkaloids ; Antineoplastic Agents ; Cell Differentiation ; Cell Line, Tumor ; Down-Regulation ; Humans ; Leukemia, Promyelocytic, Acute ; metabolism ; Phospholipid Transfer Proteins ; metabolism ; Quinolizines ; RNA, Messenger ; Signal Transduction ; Tretinoin ; Tumor Cells, Cultured ; Up-Regulation
8.Role of phospholipid transfer protein in cigarette smoke-induced apoptosis of RLE-6TN cells.
Ke LIAO ; Hong CHEN ; Lücui ZHAO ; Fengping WU ; Yajuan CHEN
Journal of Southern Medical University 2015;35(7):941-946
OBJECTIVETo investigate the role of phospholipid transfer protein (PLTP) in cigarette smoke extract (CSE)-induced apoptosis of rat alveolar type II cells (RLE-6TN) in vitro.
METHODSRat alveolar epithelial cell line RLE-6TN were transfected with a small interfering RNA (siRNA) targeting PLTP prior to exposure to different concentrations of CSE for 24 or 48 h. The morphological changes of the apoptotic cells were observed by fluorescence microscopy with Hochest staining, and the cell apoptosis rate was measured with flow cytometry. The expression level of PLTP and caspase-3 activity in the cells were examined with Western blotting.
RESULTSExposure to CSE significantly increased the cell apoptosis rate from (1.68∓0.098)% to (18.663∓0.964)% (P<0.001). Hoechst staining revealed distinct apoptotic changes in CSE-treated cells, which showed increased PLTP expression and caspase-3 activity. PLTP knockdown with the specific siRNA partly suppressed the SCE-induced enhancement of caspase-3 activity in the cells.
CONCLUSIONPLTP may play a role in CSE-induced apoptosis of rat alveolar cells in vitro.
Animals ; Apoptosis ; Caspase 3 ; metabolism ; Cell Line ; Epithelial Cells ; cytology ; Phospholipid Transfer Proteins ; metabolism ; RNA, Small Interfering ; Rats ; Smoke ; adverse effects ; Tobacco ; adverse effects
9.Research methods in protein-protein and protein-nucleic acid interactions and application in the study of human enterovirus A71.
Zhi-Xiao ZHANG ; Ying ZHENG ; Ting-Song HU ; Qi-Han LI ; Quan-Shui FAN
Chinese Journal of Virology 2014;30(5):587-593
Methods for analyses of protein-protein interactions include: yeast two hybrid (Y2H), phage dis- play (PD), co-immunoprecipitation (Co-IP), glutathione S-transferase pull-down (GST pull-down), cellular co-localization, far-western blotting, virus overlay protein binding assay (VOPBA), surface plasmon resonance (SPR), and fluorescence resonance energy transfer (FRET). Technologies for the detection of protein-nucleic acid interactions include: yeast one hybrid (Y1H), chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), Southwestern blotting, reporter gene, Co-IP, GST pull-down, and PD. These methods are often used in the study of the human enterovirus A71 (EV-A71) by our research team. Reviews in the Chinese literature in this field are lacking, so we reviewed applications of these methods in the study of EV-A71. This review may impart important knowledge in the research of other viruses with regard to protein-protein and protein-nucleic acid interactions.
Electrophoretic Mobility Shift Assay
;
Enterovirus A, Human
;
chemistry
;
genetics
;
metabolism
;
Fluorescence Resonance Energy Transfer
;
RNA, Viral
;
metabolism
;
Two-Hybrid System Techniques
;
Viral Proteins
;
metabolism
10.Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos.
Jongki CHO ; Sungkeun KANG ; Byeong Chun LEE
Journal of Veterinary Science 2014;15(2):225-231
This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
Animals
;
Animals, Genetically Modified/genetics
;
Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism
;
Cattle/embryology/*genetics
;
DNA (Cytosine-5-)-Methyltransferase/*genetics/metabolism
;
Embryo, Mammalian/embryology/metabolism
;
Female
;
Fertilization in Vitro
;
*Gene Expression Regulation, Developmental
;
HSP70 Heat-Shock Proteins/*genetics/metabolism
;
Nuclear Transfer Techniques/veterinary
;
Parthenogenesis
;
Pregnancy
;
RNA, Messenger/genetics/metabolism
;
Transcription, Genetic

Result Analysis
Print
Save
E-mail