1.Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality.
Xi-Ren JI ; Rui-Jun WANG ; Zeng-Hui HUANG ; Hui-Lan WU ; Xiu-Hai HUANG ; Hao BO ; Ge LIN ; Wen-Bing ZHU ; Chuan HUANG
Asian Journal of Andrology 2025;27(5):638-645
Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts ( n = 101) and those with low sperm motility or concentration ( n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 ( MAP2K2 ), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Male
;
Humans
;
Spermatozoa/metabolism*
;
RNA, Transfer/genetics*
;
Sperm Motility/genetics*
;
Adult
;
Semen Analysis
;
Sexual Abstinence/physiology*
;
Sperm Count
;
DNA Fragmentation
2.Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases.
Tongyue DUAN ; Liya SUN ; Kaiyue DING ; Qing ZHAO ; Lujun XU ; Chongbin LIU ; Lin SUN
Chinese Medical Journal 2025;138(7):808-818
In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
Humans
;
Mitochondrial Diseases/therapy*
;
RNA, Mitochondrial
;
RNA/genetics*
;
Mitochondria/genetics*
;
Mutation/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
3.Identification of a Fusobacterial RNA-binding protein involved in host small RNA-mediated growth inhibition.
Pu-Ting DONG ; Mengdi YANG ; Jie HU ; Lujia CEN ; Peng ZHOU ; Difei XU ; Peng XIONG ; Jiahe LI ; Xuesong HE
International Journal of Oral Science 2025;17(1):48-48
Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome, with implications for microbial pathogenesis and host defense. Among these, transfer RNA-derived small RNAs (tsRNAs) have garnered attention for their roles in modulating microbial behavior. However, the bacterial factors mediating tsRNA interaction and functionality remain poorly understood. In this study, using RNA affinity pull-down assay in combination with mass spectrometry, we identified a putative membrane-bound protein, annotated as P-type ATPase transporter (PtaT) in Fusobacterium nucleatum (Fn), which binds Fn-targeting tsRNAs in a sequence-specific manner. Through targeted mutagenesis and phenotypic characterization, we showed that in both the Fn type strain and a clinical tumor isolate, deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition. Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant, highlighting the functional significance of PtaT in purine and pyrimidine metabolism. Furthermore, AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA. By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs (sRNAs), our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions.
Fusobacterium nucleatum/growth & development*
;
RNA-Binding Proteins/genetics*
;
Bacterial Proteins/genetics*
;
RNA, Bacterial/metabolism*
;
Humans
;
RNA, Transfer/metabolism*
4.Advances of virus-like particles as mRNA delivery vectors.
Xinyu LIN ; Shuling REN ; Tingdong LI ; Shengxiang GE
Chinese Journal of Biotechnology 2025;41(4):1268-1279
With the continuous development of messenger RNA (mRNA) technology, mRNA-based drugs have shown broad application prospects in recent years. Since mRNA is easy to be degraded and difficult to enter cells directly, the mRNA delivery vectors have always been one of the focuses in the development of mRNA-based drugs. Although lipid nanoparticles (LNPs) have been widely used for the delivery of mRNA, they tend to accumulate in the liver, and repeated administration can easily induce inflammatory response which leads to tissue damage. Compared with LNPs, virus-like particles (VLPs) have the advantages of high biocompatibility and safety, being expected to offer new solutions for mRNA delivery. Based on the practical application requirements, this review summarized the research progress in VLPs according to the mRNA delivery steps: particle assembly, delivery into cells, and intracellular release. We hope to provide a basis and design ideas for the development of new VLPs as delivery vectors, promote the application of VLPs in mRNA delivery, and provide new possibilities for the research and application of mRNA-based therapeutics.
RNA, Messenger/administration & dosage*
;
Humans
;
Nanoparticles/chemistry*
;
Genetic Vectors
;
Lipids/chemistry*
;
Drug Delivery Systems/methods*
;
Virion
;
Animals
;
Gene Transfer Techniques
;
Liposomes
5.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
6.Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system.
Yuewen JIANG ; Qihua PAN ; Zhi WANG ; Ke LU ; Bilin XIA ; Tiansheng CHEN
Journal of Zhejiang University. Science. B 2024;25(12):1083-1096
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, belonging to the type II CRISPR/Cas system, is an effective gene-editing tool widely used in different organisms, but the size of Streptococcus pyogenes Cas9 (SpCas9) is quite large (4.3 kb), which is not convenient for vector delivery. In this study, we used a codon-optimized Staphylococcus aureus Cas9 (SaCas9) system to edit the tyrosinase (tyr), oculocutaneous albinism II (oca2), and paired box 6.1 (pax6.1) genes in the fish model medaka(Oryzias latipes), in which the size of SaCas9 (3.3 kb) is much smaller and the necessary protospacer-adjacent motif (PAM) sequence is 5'-NNGRRT-3'. We also used a transfer RNA (tRNA)-single-guide RNA (sgRNA) system to express the functional sgRNA by transcription eitherin vivo or in vitro, and the combination of SaCas9 and tRNA-sgRNA was used to edit the tyr gene in the medaka genome. The SaCas9/sgRNA and SaCas9/tRNA-sgRNA systems were shown to edit the medaka genome effectively, while the PAM sequence is an essential part for the efficiency of editing. Besides, tRNA can improve the flexibility of the system by enabling the sgRNA to be controlled by a common promoter such as cytomegalovirus. Moreover, the all-in-one cassette cytomegalovirus (CMV)-SaCas9-tRNA-sgRNA-tRNA is functional in medaka gene editing. Taken together, the codon-optimized SaCas9 system provides an alternative and smaller tool to edit the medaka genome and potentially other fish genomes.
Animals
;
Oryzias/genetics*
;
Gene Editing/methods*
;
CRISPR-Cas Systems
;
Codon
;
RNA, Guide, CRISPR-Cas Systems/genetics*
;
Monophenol Monooxygenase/genetics*
;
CRISPR-Associated Protein 9/genetics*
;
RNA, Transfer/genetics*
;
Staphylococcus aureus/genetics*
;
PAX6 Transcription Factor/genetics*
7.Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus.
Yuping LIU ; Jianyong HU ; Zijun NING ; Peiyi XIAO ; Tianyan YANG
Chinese Journal of Biotechnology 2023;39(7):2965-2985
Schizothorax argentatus that only distributes in the Ili River basin in Xinjiang is one of the rare and endangered species of schizothorax in China, thus has high scientific and economic values. In this study, the complete mitochondrial genome sequence of S. argenteus with a length of 16 580 bp was obtained by high-throughput sequencing. The gene compositions and arrangement were similar to those of typical vertebrates. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding region (D-loop). The nucleotide compositions were A (30.25%), G (17.28%), C (27.20%), and T (25.27%), respectively, showing obvious AT bias and anti-G bias. Among the tRNA genes, only tRNA-Ser(GCU) could not form a typical cloverleaf structure due to the lack of dihydrouracil arm. The AT-skew and GC-skew values of the ND6 gene were fluctuating the most, suggesting that the gene may experience different selection and mutation pressures from other genes. The mitochondrial control region of S. argenteus contained three different domains, i.e., termination sequence region (ETAS), central conserved region (CSB-F, CSB-E, CSB-D, and CSB-B), and conserved sequence region (CSB1, CSB2, and CSB3). The conserved sequence fragment TT (AT) nGTG, which was ubiquitous in Cypriniformes, was identified at about 50 bp downstream CSB3. Phylogenetic relationships based on the complete mitochondrial genome sequence of 28 Schizothorax species showed that S. argenteus had differentiated earlier and had a distant relationship with other species, which may be closely related to the geographical location and the hydrological environment where it lives.
Animals
;
Genome, Mitochondrial/genetics*
;
Phylogeny
;
Sequence Analysis, DNA
;
Cyprinidae/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
;
Genes, Mitochondrial
8.Correlation of mitochondrial tRNA variants with coronary heart disease in a Chinese pedigree.
Yu DING ; Jinfang YU ; Beibei GAO ; Jinyu HUANG
Chinese Journal of Medical Genetics 2023;40(7):807-814
OBJECTIVE:
To explore the correlation of mitochondrial DNA (mtDNA) variants and coronary heart disease (CHD) in a Chinese pedigree and the possible molecular mechanisms.
METHODS:
A Chinese pedigree featuring matrilineal inheritance of CHD who visited Hangzhou First People's Hospital in May 2022 was selected as the study subject. Clinical data of the proband and her affected relatives was collected. By sequencing the mtDNA of the proband and her pedigree members, candidate variants were identified through comparison with wild type mitochondrial genes. Conservative analysis among various species was conducted, and bioinformatics software was used to predict the impact of variants on the secondary structure of tRNA. Real-time PCR was carried out to determine the copy number of mtDNA, and a transmitochondrial cell line was established for analyzing the mitochondrial functions, including membrane potential and ATP level.
RESULTS:
This pedigree had contained thirty-two members from four generations. Among ten maternal members, four had CHD, which yielded a penetrance rate of 40%. Sequence analysis of proband and her matrilineal relatives revealed the presence of a novel m.4420A>T variant and a m.10463T>C variant, both of which were highly conserved among various species. Structurally, the m.4420A>T variant had occurred at position 22 in the D-arm of tRNAMet, which disrupted the 13T-22A base-pairing, while the m.10463T>C variant was located at position 67 in the acceptor arm of tRNAArg, a position critical for steady-state level of the tRNA. Functional analysis revealed that patients with the m.4420A>T and m.10463T>C variants exhibited much fewer copy number of mtDNA and lower mitochondrial membrane potential (MMP) and ATP contents (P < 0.05), which were decreased by approximately 50.47%, 39.6% and 47.4%, respectively.
CONCLUSION
Mitochondrial tRNAMet 4420A>T and tRNAArg 10463T>C variants may underlay the maternally transmitted CHD in this pedigree, which had shown variation in mtDNA homogeneity, age of onset, clinical phenotype and other differences, suggesting that nuclear genes, environmental factors and mitochondrial genetic background have certain influence on the pathogenesis of CHD.
Humans
;
Female
;
Mutation
;
Pedigree
;
RNA, Transfer, Met
;
East Asian People
;
RNA, Transfer, Arg
;
DNA, Mitochondrial/genetics*
;
Coronary Disease/genetics*
;
Adenosine Triphosphate
9.High expression of VARS promotes the growth of multiple myeloma cells by causing imbalance in valine metabolism.
Rui SHI ; Wanqing DU ; Yanjuan HE ; Jian HU ; Han YU ; Wen ZHOU ; Jiaojiao GUO ; Xiangling FENG
Journal of Central South University(Medical Sciences) 2023;48(6):795-808
OBJECTIVES:
Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth.
METHODS:
The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively.
RESULTS:
Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05).
CONCLUSIONS
MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.
Humans
;
Valine-tRNA Ligase
;
Multiple Myeloma/genetics*
;
Metabolomics
;
Amino Acids
;
RNA, Transfer
10.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation

Result Analysis
Print
Save
E-mail