1.Research progress in transcriptional regulation and biological functions of small nuclear RNAs in plants.
Yue WU ; Xinyu LI ; Xiaoxia DENG ; Ling YANG ; Haitao HU
Chinese Journal of Biotechnology 2025;41(7):2610-2622
Small nuclear RNAs (snRNAs) refer to a class of highly abundant and functionally important non-coding small RNAs that are localized in the eukaryotic nucleus. These snRNAs are highly conserved in different eukaryotes during evolution and form complexes with specific chaperones to fulfill critical biological functions, including precursor messenger RNA (pre-mRNA) splicing and ribosomal RNA (rRNA) modification. Consequently, the regulation of snRNA gene expression is a crucial biological process for plants. In plants, the transcription and processing of snRNAs are regulated by RNA polymerase (Pol), snRNA-activating protein complex (SNAPc), defective in snRNA processing (DSP), and specific cis-elements in the snRNA promoter regions. Proper regulation of snRNA expression is essential for normal plant growth, development, and stress responses. This review summarizes the classification, structures, transcriptional regulation, and biological functions of plant snRNA genes, while outlining future research directions for snRNAs.
RNA, Small Nuclear/physiology*
;
Gene Expression Regulation, Plant
;
Transcription, Genetic
;
Plants/metabolism*
;
RNA, Plant/genetics*
2.Microbe-induced gene silencing targeting VdEno of Verticillium dahliae for the control of cotton Verticillium wilt.
Wen TIAN ; Qianye GUO ; Qing SHUAI ; Qingyan LIU ; Huishan GUO ; Jianhua ZHAO
Chinese Journal of Biotechnology 2025;41(10):3790-3800
Small RNAs (sRNAs), the key components of RNA interference (RNAi) or RNA silencing, can mediate cell-autonomous gene silencing and function as signaling molecules across species. Microbe-induced gene silencing (MIGS), which is based on interspecies RNAi, is an effective approach for controlling fungal diseases in crops. The enolase gene VdEno is essential for the growth and development of the fungal pathogen Verticillium dahliae, which causes cotton Verticillium wilt. In this study, we engineered Trichoderma harzianum (Th) to express the double-stranded RNA (dsRNA) targeting VdEno. The engineered strain Th-VdEnoi successfully generated VdEno-specific small interfering RNA (siVdEno). We further confirmed that Th-VdEnoi effectively induced VdEno silencing at the translational level. The results of crop protection assays revealed that the cotton plants co-inoculated with V. dahliae (strain V592) and Th-VdEnoi presented significantly reduced disease severity and lower fungal biomass in their roots than the control plants inoculated with V. dahliae alone or with V. dahliae and Th-GFPi (a control strain expressing GFP-targeting dsRNA). Collectively, our findings demonstrate that VdEno is an effective target for controlling cotton Verticillium wilt and confirm that MIGS is a promising strategy for managing soil-borne fungal pathogens in crops. MIGS provides strong technical support for reducing the application of conventional chemical pesticides, developing eco-friendly biopesticides, and facilitating the sustainable development of agriculture.
Gossypium/microbiology*
;
Plant Diseases/prevention & control*
;
Gene Silencing
;
Ascomycota/genetics*
;
RNA Interference
;
RNA, Double-Stranded/genetics*
;
Hypocreales/genetics*
;
RNA, Small Interfering/genetics*
;
Verticillium/genetics*
;
Fungal Proteins/genetics*
3.N-terminal domain of Rep encoded by beet severe curly top virus mediates suppression of RNA silencing and induces VIM5 expression.
Jingyu XU ; Jianxin LU ; Zhenyu YU ; Meijie HU ; Chengkai GUO ; Zhongqi QIU ; Zhongqi CHEN
Chinese Journal of Biotechnology 2025;41(10):3956-3968
Geminiviruses cause substantial crop yield losses worldwide. The replication initiator protein (Rep) encoded by geminiviruses is indispensable for geminiviral replication. The Rep protein encoded by beet severe curly top virus (BSCTV, genus Curtovirus, family Geminiviridae) induces VARIANT IN METHYLATION 5 (VIM5) expression in Arabidopsis leaves upon BSCTV infection. VIM5 functions as a ubiquitination-related E3 ligase to promote the proteasomal degradation of methyltransferases, resulting in reduction of methylation levels in the BSCTV C2-3 promoter. However, the specific domains of Rep responsible for VIM5 induction remain poorly characterized. Although Rep proteins from several geminiviruses act as viral suppressors of RNA silencing (VSRs), whether BSCTV Rep also possesses VSR activity remains to be illustrated. In this study, we employed a transient expression system in the 16c-GFP transgenic and the wild-type Nicotiana benthamiana plants to analyze the VSR and the VIM5-inducing activities of different truncated Rep proteins haboring distinct domains. We found that the N-terminal domain (amino acids 1-180) of Rep suppressed GFP silencing in 16c-GFP transgenic N. benthamiana leaves. The minimal N-terminal fragment (amino acids 1-104) induced VIM5 expression upon co-infiltration, while C-terminal truncations lacked VIM5-inducing activity. Our results indicate that the N-terminal domain of Rep encoded by BSCTV mediates the suppression of RNA silencing and induces VIM5 expression. Thus, our findings contribute to a better understanding of interactions between geminiviral Rep and plant hosts.
Geminiviridae/genetics*
;
Nicotiana/metabolism*
;
Arabidopsis/metabolism*
;
RNA Interference
;
Viral Proteins/metabolism*
;
Arabidopsis Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Protein Domains
;
Plant Diseases/virology*
;
Methyltransferases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
DNA Helicases/genetics*
4.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
5.Multi-omics of Circular RNAs and Their Responses to Hormones in Moso Bamboo (Phyllostachys edulis).
Yongsheng WANG ; Huihui WANG ; Huiyuan WANG ; Ruifan ZHOU ; Ji WU ; Zekun ZHANG ; Yandong JIN ; Tao LI ; Markus V KOHNEN ; Xuqing LIU ; Wentao WEI ; Kai CHEN ; Yubang GAO ; Jiazhi DING ; Hangxiao ZHANG ; Bo LIU ; Chentao LIN ; Lianfeng GU
Genomics, Proteomics & Bioinformatics 2023;21(4):866-885
Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.
RNA, Circular/metabolism*
;
Multiomics
;
Poaceae/metabolism*
;
Seedlings/genetics*
;
Hormones/metabolism*
;
MicroRNAs/metabolism*
;
Gene Expression Regulation, Plant
6.Progress in circular RNAs of plants.
Zhenzhen CHANG ; Guizhi GONG ; Zhuchun PENG ; Cheng YANG ; Qibin HONG
Chinese Journal of Biotechnology 2022;38(5):1706-1723
With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.
Animals
;
MicroRNAs/metabolism*
;
Organelle Biogenesis
;
Plants/metabolism*
;
Protein Biosynthesis/physiology*
;
RNA, Circular/metabolism*
;
RNA, Plant/metabolism*
;
Research/trends*
;
Stress, Physiological/genetics*
7.Differences between male and female leaves of Schisandra sphenanthera: based on RNA-Seq.
Jie LI ; Jia-Qi GAO ; Tie-Gui NAN ; Jun-Hui ZHOU ; Zhong-Yi HUA ; Jian YANG ; Chao JIANG ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2021;46(22):5797-5803
Schisandra sphenanthera is dioecious and only the fruits of female plants can be used as medicine and food. It is of great significance for the cultivation and production of S. sphenanthera to explore the differences between male and female plants at the non-flowering stage and develop the identification markers at non-flowering or seedling stage. In this study, the transcriptome of male and female leaves of S. sphenanthera at the non-flowering stage was sequenced by Illumina high-throughput sequencing technology and analyzed based on bioinformatics. A total of 236 682 transcripts were assembled by Trinity software and 171 588 were chosen as unigenes. Finally, 1 525 differentially expressed genes(DEGs) were identified, with 458 up-regulated and 1 067 down-regulated in female lea-ves. The down-regulated genes mainly involve photosynthesis, photosynthesis-antenna protein, carbon fixation in photosynthetic or-ganisms, and other pathways. Real-time quantitative PCR(qPCR) identified two genes between male and female leaves and one of them was a HVA22-like gene related to floral organ development and abscisic acid(ABA). Enzyme linked immunosorbent assay(ELISA) was applied to determine the content of ABA, auxin, gibberellin, and zeatin riboside(ZR) in leaves of S. sphenanthera. The results showed that the content of ABA and ZR in male leaves was significantly higher than that in female leaves. The involvement of down-regulated genes in female leaves in the photosynthesis pathway and the significant differences in the content of endogenous hormones between male and female leaves lay a scientific basis for analyzing the factors affecting sex differentiation of S. sphenanthera.
Abscisic Acid
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Leaves/genetics*
;
RNA-Seq
;
Schisandra
;
Transcriptome
8.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology
9.Establishment of RNA interfered hairy root system of two CYP450 genes in Arnebia euchroma and its influence.
Jiu-Wen LIANG ; Tan LI ; Rui-Shan WANG ; Li ZHOU ; Quan YANG ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2020;45(14):3422-3431
In this study, based on the transcriptome database of suspension cells of Arnebia euchroma, we explored two candidate cytochrome P450 enzyme genes that might relate to the shikonin biosynthesis downstream pathway when CYP76B74 sequence was referenced. We constructed interference-type hairy roots of candidate genes and cultured them. We measured the fresh weight, dry weight, total naphthoquinone content, shikonin and its derivatives content and expression levels of key enzyme genes involved in shikonin biosynthesis pathway. The effects of candidate genes on the growth and shikonin production of A. euchroma hairy roots were discussed, and the possible regulatory mechanisms that candidate genes affected shikonin synthesis were discussed. Through local Blast and phylogenetic analysis, two candidate CYP450 genes(CYP76B75 and CYP76B100) with high homology to CYP76B74 in A. euchroma were screened, and corresponding interference hairy roots were constructed. Compared with the control(RNAi-control), the fresh weight of CYP76B75 interfered hairy root(RNAi-CYP76B75) and CYP76B100 interfered hairy root(RNAi-CYP76B100) were significantly reduced, while dry weight were not affected, so the dry rate increased significantly. Except for β-acetoxyisovalerylalkannin, which is high in three groups of hairy roots, the contents of shikonin, deoxyshikonin, acetylshikonin, β,β'-dimethacrylicalkannin, β-hydroxyisovalerylshikonin,β-hydroxyisovalerylshikonin, isobutyrylshikonin and total naphthoquinones showed a consistent pattern: RNAi-CYP76B75>RNAi-CYP76B100>RNAi-control. Among them, the synthesis of β-hydroxyisovalerylshikonin was most significantly promoted by interfering with the expression of CYP76B75. The content of β-hydroxyisovalerylshikonin in RNAi-CYP76B75 was 11.7 times that of RNAi-control. RESULTS:: of real-time qPCR analysis showed that compared to RNAi-control, the expression levels of AePGT gene in RNAi-CYP76B75 and RNAi-CYP76B100 were not changed significantly, and the expression levels of CYP76B74 and AeHMGR were up-regulated. In addition, the expression level of CYP76B100 in RNAi-CYP76B75 was down-regulated, whereas in RNAi-CYP76B100, the expression of CYP76B75 was significantly up-regulated. Therefore, this study confirmed that when the expression of CYP76B75 and CYP76B100 were interrupted, the growth of hairy roots were suppressed, but the synthesis of shikonin were promoted. They might increase the shikonin biosynthesis by up-regulating the expression of CYP76B74 in the hairy roots of A. euchroma.
Boraginaceae
;
genetics
;
Cytochrome P-450 Enzyme System
;
Naphthoquinones
;
Phylogeny
;
Plant Roots
;
RNA
;
RNA Interference
10.Hawthorn Extract Alleviates Atherosclerosis through Regulating Inflammation and Apoptosis Related Factors: An Experimental Study.
Song-Zi WANG ; Min WU ; Ke-Ji CHEN ; Yue LIU ; Jing SUN ; Zhuo SUN ; He MA ; Long-Tao LIU
Chinese journal of integrative medicine 2019;25(2):108-115
OBJECTIVE:
To determine the effects of hawthorn extract on serum lipid levels, pathological changes in aortic atherosclerosis plaque, inflammatory factors, and apoptosis-related protein and mRNA expression in apolipoprotein E gene knockout (ApoE) mice.
METHODS:
Thirty-six ApoE mice were fed with a high-fat diet starting at the age of 8 weeks. Mice were randomly divided into 3 groups by a random number table including model group, hawthorn extract group, and simvastatin group, 12 mice in each group. Twelve 8-week-old C57BL/6 mice were fed a basic diet and served as control. The mice in the control and model groups were administered 0.2 mL saline daily, the mice in the hawthorn extract and simvastatin groups were administered with 50 mg/kg hawthorn extract or 5 mg/kg simvastatin daily for 16 weeks. After 16 weeks, plasma lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were determined by an enzymatic assay. Aortic atherosclerotic lesions were observed by light microscopy, scanning and transmission electron microscopy, respectively. Plasma levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), adiponectin (APN), and hypersensitive C-reactive protein (hs-CRP) were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expressions of Bax and Bcl-2 in the aorta were assessed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively.
RESULTS:
Compared to the control group, the plasma levels of TC, TG and LDL-C were significantly increased and HDL-C were significantly decreased in the model group (P<0.01). Compared to the model group, treatment with hawthorn extract significantly decreased the plasma levels of TC, TG, and LDL-C and increased the plasma level of HDL-C in ApoE mice (P<0.01). The levels of MCP-1, IL-1ß, and hs-CRP in the model group were significantly increased and APN was significantly decreased compared with the control group (P<0.01). Compared to the model group, treatment with hawthorn extract decreased the levels of MCP-1, IL-1ß, and hs-CRP and increased the APN level (P<0.01). Compared to the control group, the protein and mRNA expression of Bax in the model group were significantly increased and the expression of Bcl-2 was significantly decreased (P<0.01). Hawthorn extract also reduced the protein and mRNA expression of Bax and increased the Bcl-2 expression in the aorta (P<0.01).
CONCLUSION
Hawthorn extract has anti-atherosclerosis and stabilizing unstable plaque effects. The mechanism may be related to the inflflammation and apoptosis signaling pathways.
Animals
;
Aorta
;
pathology
;
ultrastructure
;
Apoptosis
;
drug effects
;
Atherosclerosis
;
blood
;
complications
;
drug therapy
;
Crataegus
;
chemistry
;
Inflammation
;
blood
;
complications
;
drug therapy
;
Inflammation Mediators
;
metabolism
;
Lipids
;
blood
;
Male
;
Mice, Inbred C57BL
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
RNA, Messenger
;
genetics
;
metabolism
;
bcl-2-Associated X Protein
;
metabolism

Result Analysis
Print
Save
E-mail