1.Mechanism of n-butanol alcohol extract of Baitouweng Decoction in treatment of vulvovaginal candidiasis based on negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis.
Kai-Fan HU ; Ling MO ; Hao ZHANG ; Dan XIA ; Gao-Xiang SHI ; Da-Qiang WU ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2023;48(6):1578-1588
This study aimed to explore the mechanism of n-butanol alcohol extract of Baitouweng Decoction(BAEB) in the treatment of vulvovaginal candidiasis(VVC) in mice based on the negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis. In the experiment, female C57BL/6 mice were divided randomly into the following six groups: a blank control group, a VVC model group, high-, medium-, and low-dose BAEB groups(80, 40, and 20 mg·kg~(-1)), and a fluconazole group(20 mg·kg~(-1)). The VVC model was induced in mice except for those in the blank control group by the estrogen dependence method. After modeling, no treatment was carried out in the blank control group. The mice in the high-, medium-, and low-dose BAEB groups were treated with BAEB at 80, 40, and 20 mg·kg~(-1), respectively, and those in the fluconazole group were treated with fluconazole at 20 mg·kg~(-1). The mice in the VVC model group received the same volume of normal saline. The general state and body weight of mice in each group were observed every day, and the morphological changes of Candida albicans in the vaginal lavage of mice were examined by Gram staining. The fungal load in the vaginal lavage of mice was detected by microdilution assay. After the mice were killed, the degree of neutrophil infiltration in the vaginal lavage was detected by Papanicolaou staining. The content of inflammatory cytokines interleukin(IL)-1β, IL-18, and lactate dehydrogenase(LDH) in the vaginal lavage was tested by enzyme-linked immunosorbent assay(ELISA), and vaginal histopathology was analyzed by hematoxylin-eosin(HE) staining. The expression and distribution of NLRP3, PKCδ, pNLRC4, and IL-1Ra in vaginal tissues were measured by immunohistochemistry(IHC), and the expression and distribution of pNLRC4 and IL-1Ra in vaginal tissues were detected by immunofluorescence(IF). The protein expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by Western blot(WB), and the mRNA expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by qRT-PCR. The results showed that compared with the blank control group, the VVC model group showed redness, edema, and white secretions in the vagina. Compared with the VVC model group, the BAEB groups showed improved general state of VVC mice. As revealed by Gram staining, Papanicolaou staining, microdilution assay, and HE staining, compared with the blank control group, the VVC model group showed a large number of hyphae, neutrophils infiltration, and increased fungal load in the vaginal lavage, destroyed vaginal mucosa, and infiltration of a large number of inflammatory cells. BAEB could reduce the transformation of C. albicans from yeast to hyphae. High-dose BAEB could significantly reduce neutrophil infiltration and fungal load. Low-and medium-dose BAEB could reduce the da-mage to the vaginal tissue, while high-dose BAEB could restore the damaged vaginal tissues to normal levels. ELISA results showed that the content of inflammatory cytokines IL-1β, IL-18, and LDH in the VVC model group significantly increased compared with that in the blank control group, and the content of IL-1β, IL-18 and LDH in the medium-and high-dose BAEB groups was significantly reduced compared with that in the VVC model group. WB and qRT-PCR results showed that compared with the blank control group, the VVC model group showed reduced protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues of mice and increased protein and mRNA expression of NLRP3. Compared with the VVC model group, the medium-and high-dose BAEB groups showed up-regulated protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues and inhibited protein and mRNA expression of NLRP3 in vaginal tissues. This study indicated that the therapeutic effect of BAEB on VVC mice was presumably related to the negative regulation of NLRP3 inflammasome by promoting PKCδ/NLRC4/IL-1Ra axis.
Female
;
Animals
;
Humans
;
Mice
;
Candidiasis, Vulvovaginal/drug therapy*
;
Inflammasomes/genetics*
;
Interleukin-18
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
1-Butanol/pharmacology*
;
Fluconazole/therapeutic use*
;
Interleukin 1 Receptor Antagonist Protein/therapeutic use*
;
Mice, Inbred C57BL
;
Candida albicans
;
Cytokines
;
Drugs, Chinese Herbal/pharmacology*
;
Ethanol
;
RNA, Messenger
;
Calcium-Binding Proteins/therapeutic use*
2.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
OBJECTIVE:
Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
METHODS:
A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
RESULTS:
Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
CONCLUSION
Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
Humans
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
Mice, Nude
;
Glycogen Synthase Kinase 3 beta/genetics*
;
beta Catenin/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Desmin/therapeutic use*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Hypoxia
;
RNA, Messenger/therapeutic use*
;
Cell Proliferation
3.Role and mechanism of platelet-derived growth factor BB in thrombocytosis in Kawasaki disease.
Xi-Wei SHEN ; Zhi-Yuan TANG ; Xian-Juan SHEN ; Jian-Mei ZHAO
Chinese Journal of Contemporary Pediatrics 2023;25(6):579-586
OBJECTIVES:
To study the role and mechanism of platelet-derived growth factor BB (PDGF-BB) on platelet production in Kawasaki disease (KD) mice and human megakaryocytic Dami cells through in vitro and invivo experiments.
METHODS:
ELISA was used to measure the expression of PDGF in the serum of 40 children with KD and 40 healthy children. C57BL/6 mice were used to establish a model of KD and were then randomly divided into a normal group, a KD group, and an imatinib group (30 mice in each group). Routine blood test was performed for each group, and the expression of PDGF-BB, megakaryocyte colony forming unit (CFU-MK), and the megakaryocyte marker CD41 were measured. CCK-8, flow cytometry, quantitative real-time PCR, and Western blot were used to analyze the role and mechanism of PDGF-BB in platelet production in Dami cells.
RESULTS:
PDGF-BB was highly expressed in the serum of KD children (P<0.001). The KD group had a higher expression level of PDGF-BB in serum (P<0.05) and significant increases in the expression of CFU-MK and CD41 (P<0.001), and the imatinib group had significant reductions in the expression of CFU-MK and CD41 (P<0.001). In vitro experiments showed that PDGF-BB promoted Dami cell proliferation, platelet production, mRNA expression of PDGFR-β, and protein expression of p-Akt (P<0.05). Compared with the PDGF-BB group, the combination group (PDGF-BB 25 ng/mL + imatinib 20 μmol/L) had significantly lower levels of platelet production, mRNA expression of PDGFR-β, and protein expression of p-Akt (P<0.05).
CONCLUSIONS
PDGF-BB may promote megakaryocyte proliferation, differentiation, and platelet production by binding to PDGFR-β and activating the PI3K/Akt pathway, and the PDGFR-β inhibitor imatinib can reduce platelet production, which provides a new strategy for the treatment of thrombocytosis in KD.
Child
;
Humans
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Becaplermin
;
Imatinib Mesylate/therapeutic use*
;
Mucocutaneous Lymph Node Syndrome/drug therapy*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Thrombocytosis/etiology*
;
RNA, Messenger
4.The Effects and Regulatory Mechanism of Targeting CXC Chemokine Receptor 1/2 Combined with Ara-C on the Malignant Biological Behaviors of U937 Cells of Acute Myeloid Leukemia.
Yan-Quan LIU ; Jian-Zhen SHEN ; Yue YIN ; Yu-Ting CHEN ; Hui YANG ; Huan-Wen TANG
Journal of Experimental Hematology 2023;31(2):364-376
OBJECTIVE:
To investigate and analyze the effect of CXC chemokine receptor 1/2 (CXCR1/2) targeting inhibitor Reparixin combined with cytarabine (Ara-C) on the malignant biological behaviors of acute myeloid leukemia cells and its effect on the expression of the CXCR family, while exploring the accompanying molecular mechanism, providing scientific basis and reference for new molecular markers and targeted therapy for AML.
METHODS:
Acute myeloid leukemia U937 cells were treated with different concentrations of Reparixin, Ara-C alone or in combination, and the cell morphology was observed under an inverted microscope; Wright-Giemsa staining was used to detect cell morphological changes; CCK-8 method was used to detect cell proliferation; the ability of cell invasion was detected by Transwell chamber method; the ability of colony formation was detected by colony formation assay; cell apoptosis was detected by Hoechst 33258 fluorescent staining and Annexin V/PI double-staining flow cytometry; monodansylcadaverine(MDC) staining was used to detect cell autophagy; the expression of apoptosis, autophagy and related signaling pathway proteins was detected by Western blot and the expression changes of CXCR family were detected by real-time quantitative polymerase chain reaction (qRT-PCR).
RESULTS:
Reparixin could inhibit the proliferation, invasion, migration and clone formation ability of U937 cells. Compared with the single drug group, when U937 cells were intervened by Reparixin combined with Ara-C, the malignant biological behaviors such as proliferation, invasion and colony formation were significantly decreased, and the levels of apoptosis and autophagy were significantly increased (P<0.01). After Reparixin combined with Ara-C intervenes in U937 cells, it can up-regulate the expression of the pro-apoptotic protein Bax and significantly down-regulate the expression of the anti-apoptotic protein Bcl-2, and also hydrolyze and activate Caspase-3, thereby inducing cell apoptosis. Reparixin combined with Ara-C could up-regulate the expressions of LC3Ⅱ and Beclin-1 proteins in U937 cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P<0.01). MDC result showed that the green granules of vesicles increased significantly, and a large number of broken cells were seen (P<0.01). Reparixin combined with Ara-C can significantly inhibit the phosphorylation level of PI3K, AKT and NF-κB signaling molecule, inhibit the malignant biological behavior of cells by inhibiting the activation of PI3K/AKT/NF-κB pathway, and induce programmed cell death. Ara-C intervention in U937 cells had no effect on the expression of CXCR family (P>0.05). The expression of CXCR1, CXCR2, and CXCR4 mRNA could be down-regulated by Reparixin single-agent intervention in U937 cells (P<0.05), and the expression of CXCR2 was more significantly down-regulated than the control group and other CXCRs (P<0.01). When Reparixin and Ara-C intervened in combination, the down-regulated levels of CXCR1 and CXCR2 were more significant than those in the single-drug group (P<0.01), while the relative expressions of CXCR4 and CXCR7 mRNA had no significant difference compared with the single-drug group (P>0.05).
CONCLUSION
Reparixin combined with Ara-C can synergistically inhibit the malignant biological behaviors of U937 cells such as proliferation, invasion, migration and clone formation, and induce autophagy and apoptosis. The mechanism may be related to affecting the proteins expression of Bcl-2 family and down-regulating the proteins expression of CXCR family, while inhibiting the PI3K/AKT/NF-κB signaling pathway.
Humans
;
U937 Cells
;
Cytarabine/therapeutic use*
;
Receptors, Interleukin-8A
;
NF-kappa B
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Leukemia, Myeloid, Acute/genetics*
;
Apoptosis
;
Cell Proliferation
;
Apoptosis Regulatory Proteins
;
Proto-Oncogene Proteins c-bcl-2
;
RNA, Messenger
;
Cell Line, Tumor
5.Effect of Recombinant Human Thrombopoietin (rhTPO) on Long-term Hematopoietic Recovery in Mice with Acute Radiation Sickness and Relative Mechanism.
Hao LUAN ; Shuang XING ; Jing-Kun YANG ; Ye-Mei WANG ; Xue-Wen ZHANG ; Zi-Zhi QIAO ; Xing SHEN ; Zu-Yin YU
Journal of Experimental Hematology 2023;31(2):546-552
OBJECTIVE:
To investigate the effect and relative mechanism of Recombinant Human Thrombopoietin (rhTPO) on long-term hematopoietic recovery in mice with acute radiation sickness.
METHODS:
Mice were intramuscularly injected with rhTPO (100 μg/kg) 2 hours after total body irradiation with 60Co γ-rays (6.5 Gy). Moreover, six months after irradiation, peripheral blood, hematopoietic stem cells (HSC) ratio, competitive transplantation survival rate and chimerization rate, senescence rate of c-kit+ HSC, and p16 and p38 mRNA expression of c-kit+ HSC were detected.
RESULTS:
Six months after 6.5 Gy γ-ray irradiation, there were no differences in peripheral blood white blood cells, red blood cells, platelets, neutrophils and bone marrow nucleated cells in normal group, irradiated group and rhTPO group (P>0.05). The proportion of hematopoietic stem cells and multipotent progenitor cells in mice of irradiated group was significantly decreased after irradiation (P<0.05), but there was no significant changes in rhTPO group (P>0.05). The counts of CFU-MK and BFU-E in irradiated group were significantly lower than that in normal group, and rhTPO group was higher than that of the irradiated group(P<0.05). The 70 day survival rate of recipient mice in normal group and rhTPO group was 100%, and all mice died in irradiation group. The senescence positive rates of c-kit+ HSC in normal group, irradiation group and rhTPO group were 6.11%, 9.54% and 6.01%, respectively (P<0.01). Compared with the normal group, the p16 and p38 mRNA expression of c-kit+ HSC in the irradiated mice were significantly increased (P<0.01), and it was markedly decreased after rhTPO administration (P<0.01).
CONCLUSION
The hematopoietic function of mice is still decreased 6 months after 6.5 Gy γ-ray irradiation, suggesting that there may be long-term damage. High-dose administration of rhTPO in the treatment of acute radiation sickness can reduce the senescence of HSC through p38-p16 pathway and improve the long-term damage of hematopoietic function in mice with acute radiation sickness.
Humans
;
Mice
;
Animals
;
Thrombopoietin/metabolism*
;
Hematopoietic Stem Cells
;
Blood Platelets
;
Recombinant Proteins/therapeutic use*
;
Radiation Injuries
;
RNA, Messenger/metabolism*
6.Effect of mycophenolate mofetil alleviates carbon tetrachloride-induced liver fibrosis in mice.
Peng DING ; Pengpeng ZHANG ; Hao LI ; Yingzi MING
Journal of Central South University(Medical Sciences) 2023;48(6):821-828
OBJECTIVES:
Hepatic fibrosis is a serious pathological consequence of chronic liver disease. Mycophenolate mofetil (MMF) is a commonly used immunosuppressant after organ transplant. However, the relationship between MMF and hepatic fibrosis remains unclear. This study aims to explore the effect of MMF on hepatic fibrosis in mice and the potential mechanism.
METHODS:
A total of 24 mice (male, 8-week old, C57BL/6) were randomly divided into a control group, a MMF group, a carbon tetrachloride (CCl4) group and a CCl4+MMF group (n=6 in each group). After the mice were sacrificed, the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected. The liver tissues were taken up for Masson staining and collagen I (COL1) immunohistochemistry. The levels of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were detected by Western blotting. Finally, the levels of mRNA for TGF-β1, α-SMA, and COL1 were detected using real-time PCR.
RESULTS:
Compared with the CCl4 group, the ALT and AST levels were lower (both P<0.05), the degree of liver fibrosis was alleviated, and the deposition of COL1 in the liver was significantly decreased (P<0.01) in the CCl4+MMF group. Compared with the CCl4 group, the protein expression levels of TGF-β1 and α-SMA were significantly decreased (both P<0.05) and the relative expression levels of TGF-β1, α-SMA and COL1 mRNA in the liver were significantly decreased (all P<0.05) in the CCl4+MMF.
CONCLUSIONS
MMF could reduce CCl4-induced hepatic fibrosis, which might be related to the inhibition of TGF-β1. This study is expected to provide a target for the treatment of hepatic fibrosis.
Male
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Mycophenolic Acid/therapeutic use*
;
Carbon Tetrachloride/toxicity*
;
Transforming Growth Factor beta1/genetics*
;
Liver Cirrhosis/drug therapy*
;
RNA, Messenger
7.Progress on RNA-based therapeutics for genetic diseases.
Ting LUO ; Chunxiao HUO ; Tianhua ZHOU ; Shanshan XIE
Journal of Zhejiang University. Medical sciences 2023;52(4):406-416
RNA therapeutics inhibit the expression of specific proteins/RNAs by targeting complementary sequences of corresponding genes or encode proteins for the synthesis desired genes to treat genetic diseases. RNA-based therapeutics are categorized as oligonucleotide drugs (antisense oligonucleotides, small interfering RNA, RNA aptamers), and mRNA drugs. The antisense oligonucleotides and small interfering RNA for treatment of genetic diseases have been approved by the FDA in the United States, while RNA aptamers and mRNA drugs are still in clinical trials. Chemical modifications can be applied to RNA drugs, such as pseudouridine modification of mRNA, to reduce immunogenicity and improve the efficacy. The secure and effective delivery systems such as lipid-based nanoparticles, extracellular vesicles, and virus-like particles are under development to address stability, specificity, and safety issues of RNA drugs. This article provides an overview of the specific molecular mechanisms of eleven RNA drugs currently used for treating genetic diseases, and discusses the research progress of chemical modifications and delivery systems of RNA drugs.
Aptamers, Nucleotide
;
RNA, Small Interfering/therapeutic use*
;
RNA, Messenger
;
Oligonucleotides, Antisense/therapeutic use*
8.Regulatory Mechanism of Mangiferin Combined with Bortezomib on Malignant Biological Behavior of Burkitt Lymphoma and Its Effect on Expression of CXC Chemokine Receptors.
Zhi-Min YAN ; Yan-Quan LIU ; Qing-Lin XU ; Jie LIN ; Xin LIU ; Qiu-Ping ZHU ; Xin-Ji CHEN ; Ting-Bo LIU ; Xiao-Lan LIAN
Journal of Experimental Hematology 2023;31(5):1394-1402
OBJECTIVE:
To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma.
METHODS:
Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR).
RESULTS:
Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05).
CONCLUSION
Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis/drug effects*
;
Apoptosis Regulatory Proteins/immunology*
;
Autophagy/immunology*
;
bcl-2-Associated X Protein/immunology*
;
Bortezomib/therapeutic use*
;
Burkitt Lymphoma/immunology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Drug Therapy, Combination
;
Proto-Oncogene Proteins c-akt
;
Proto-Oncogene Proteins c-bcl-2
;
Receptors, CXCR/immunology*
;
RNA, Messenger
;
TOR Serine-Threonine Kinases
;
Xanthones/therapeutic use*
9.Total Saponin Fraction of Dioscorea Nipponica Makino Improves Gouty Arthritis Symptoms in Rats via M1/M2 Polarization of Monocytes and Macrophages Mediated by Arachidonic Acid Signaling.
Qi ZHOU ; Hui-Juan SUN ; Xi-Wu ZHANG
Chinese journal of integrative medicine 2023;29(11):1007-1017
OBJECTIVE:
To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).
METHODS:
Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).
RESULTS:
HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).
CONCLUSION
The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.
Rats
;
Humans
;
Animals
;
Arthritis, Gouty/drug therapy*
;
Monocytes/pathology*
;
Interleukin-10/metabolism*
;
Arachidonic Acid/pharmacology*
;
Dioscorea/chemistry*
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha/metabolism*
;
Saponins/therapeutic use*
;
Interleukin-4/metabolism*
;
Leukotriene B4/pharmacology*
;
Rats, Sprague-Dawley
;
Macrophages
;
Signal Transduction
;
RNA, Messenger/metabolism*
10.Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia.
Bing-Jie GUO ; Yi RUAN ; Ya-Jing WANG ; Chu-Lan XIAO ; Zhi-Peng ZHONG ; Bin-Bin CHENG ; Juan DU ; Bai LI ; Wei GU ; Zi-Fei YIN
Journal of Integrative Medicine 2023;21(5):474-486
OBJECTIVE:
Jiedu Recipe (JR), a Chinese herbal remedy, has been shown to prolong overall survival time and decrease recurrence and metastasis rates in patients with hepatocellular carcinoma (HCC). This work investigated the mechanism of JR in HCC treatment.
METHODS:
The chemical constituents of JR were detected using liquid chromatography-mass spectrometry. The potential anti-HCC mechanism of JR was screened using network pharmacology and messenger ribonucleic acid (mRNA) microarray chip assay, followed by experimental validation in human HCC cells (SMMC-7721 and Huh7) in vitro and a nude mouse subcutaneous transplantation model of HCC in vivo. HCC cell characteristics of proliferation, migration and invasion under hypoxic setting were investigated using thiazolyl blue tetrazolium bromide, wound healing and Transwell assays, respectively. Image-iT™ Hypoxia Reagent was added to reveal hypoxic conditions. Stem cell sphere formation assay was used to detect the stemness. Epithelial-mesenchymal transition (EMT) markers like E-cadherin, vimentin and α-smooth muscle actin, and pluripotent transcription factors including nanog homeobox, octamer-binding transcription factor 4, and sex-determining region Y box protein 2 were analyzed using Western blotting and real-time polymerase chain reaction. Western blot was performed to ascertain the anti-HCC effect of JR under hypoxia involving the Wnt/β-catenin pathway.
RESULTS:
According to network pharmacology and mRNA microarray chip analysis, JR may potentially act on hypoxia and inhibit the Wnt/β-catenin pathway. In vitro and in vivo experiments showed that JR significantly decreased hypoxia, and suppressed HCC cell features of proliferation, migration and invasion; furthermore, the hypoxia-induced increases in EMT and stemness marker expression in HCC cells were inhibited by JR. Results based on the co-administration of JR and an agonist (LiCl) or inhibitor (IWR-1-endo) verified that JR suppressed HCC cancer stem-like properties under hypoxia by blocking the Wnt/β-catenin pathway.
CONCLUSION
JR exerts potent anti-HCC effects by inhibiting cancer stemness via abating the Wnt/β-catenin pathway under hypoxic conditions. Please cite this article as: Guo BJ, Ruan Y, Wang YJ, Xiao CL, Zhong ZP, Cheng BB, Du J, Li B, Gu W, Yin ZF. Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia. J Integr Med. 2023; 21(5): 474-486.
Animals
;
Mice
;
Humans
;
Carcinoma, Hepatocellular/genetics*
;
beta Catenin/pharmacology*
;
Liver Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
RNA, Messenger/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Gene Expression Regulation, Neoplastic

Result Analysis
Print
Save
E-mail