1.Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene.
Hu CHEN ; Jiao-Jiao LI ; Yue YUAN ; Rui JIN
Chinese Journal of Contemporary Pediatrics 2025;27(2):212-218
OBJECTIVES:
To study the expression of the transcription factor GATA1 in bronchial asthma (referred to as asthma) and its effect on the expression level of the asthma susceptibility gene orosomucoid 1-like protein 3 (ORMDL3), along with the underlying molecular mechanisms.
METHODS:
The study included 28 cases of moderate asthma, 46 cases of severe asthma, and 12 normal controls from the Gene Expression Omnibus (GEO) database. The mRNA expression levels of GATA1 and ORMDL3 were analyzed among the asthma patients and the normal controls, including their correlation. The pGL-185/58 plasmid was co-transfected with GATA1 gene siRNA (si-GATA1 group) and siRNA negative control (si-control group) into BEAS-2B cells. Bioinformatics methods were used to predict GATA1 binding sites in the promoter region of the ORMDL3 gene. The dual-luciferase reporter gene system was employed to assess the promoter activity of ORMDL3, while real-time quantitative PCR and Western blotting were used to measure the mRNA and protein expression levels of GATA1 and ORMDL3. Chromatin immunoprecipitation (ChIP) assays were conducted to determine whether GATA1 binds to the promoter region of ORMDL3.
RESULTS:
The expression levels of GATA1 and ORMDL3 mRNA were significantly higher in the severe asthma group compared to the normal control group (P<0.001). Positive correlations were observed between GATA1 mRNA and ORMDL3 mRNA expression levels in both the moderate and severe asthma groups (r=0.636 and 0.341, respectively; P<0.05). In BEAS-2B cells, the dual-luciferase reporter assay revealed that ORMDL3 promoter luciferase activity, as well as ORMDL3 mRNA and protein expression levels, were lower in the si-GATA1 group compared to the si-control group (P<0.05). ChIP assay results demonstrated that GATA1 could bind to the promoter region of ORMDL3.
CONCLUSIONS
The expression of GATA1 is increased in asthma patients, which may regulate the promoter activity and expression of the asthma susceptibility gene ORMDL3.
Humans
;
Asthma/etiology*
;
GATA1 Transcription Factor/analysis*
;
Membrane Proteins/physiology*
;
Male
;
Female
;
Promoter Regions, Genetic
;
Child
;
Transcription, Genetic
;
Gene Expression Regulation
;
Adolescent
;
RNA, Messenger/analysis*
2.Effects of hyperoxia on the expression of hippocampal N-methyl D-aspartate receptor 1 and its synapse-associated molecules in neonatal rats.
Yi XIONG ; Lin CHENG ; Na JIANG ; Tuan-Mei WANG ; Tao BO
Chinese Journal of Contemporary Pediatrics 2025;27(8):1002-1010
OBJECTIVES:
To investigate the effects of hyperoxia on the expression of N-methyl-D-aspartate receptor 1 (NMDAR1) and its synapse-associated molecules, including cannabinoid receptor 1 (CB1R), postsynaptic density 95 (PSD95), and synapsin (SYN), in the hippocampus of neonatal rats.
METHODS:
One-day-old Sprague-Dawley neonatal rats were randomly divided into a hyperoxia group and a control group (n=8 per group). The hyperoxia group was exposed to 80% ± 5% oxygen continuously, while the control group was exposed to room air, for 7 days. At 1, 3, and 7 days after hyperoxia exposure, hematoxylin and eosin (HE) staining was used to observe histopathological changes in the brain. The expression levels of NMDAR1, CB1R, PSD95, and SYN proteins and mRNAs in the hippocampus were detected by immunohistochemistry, Western blotting, and quantitative real-time PCR.
RESULTS:
After 7 days of hyperoxia exposure, the hyperoxia group showed decreased neuronal density and disordered arrangement in brain tissue. Compared with the control group, after 1 day of hyperoxia exposure, CB1R mRNA and both NMDAR1 and CB1R protein expression in the hyperoxia group were significantly downregulated, while SYN protein expression was significantly upregulated (P<0.05). After 3 days, mRNA expression of NMDAR1, CB1R, and SYN was significantly decreased (P<0.05); NMDAR1 and CB1R protein expression was significantly downregulated (P<0.05), while PSD95 and SYN protein expression was significantly upregulated (P<0.05). After 7 days of hyperoxia, the protein expression of NMDAR1 and CB1R was significantly upregulated (P<0.05).
CONCLUSIONS
Continuous hyperoxia exposure induces time-dependent changes in the expression levels of NMDAR1 and its synapse-associated molecules in the hippocampus of neonatal rats.
Animals
;
Receptors, N-Methyl-D-Aspartate/genetics*
;
Rats, Sprague-Dawley
;
Hippocampus/pathology*
;
Rats
;
Animals, Newborn
;
Receptor, Cannabinoid, CB1/genetics*
;
Hyperoxia/metabolism*
;
Disks Large Homolog 4 Protein/genetics*
;
Synapsins/genetics*
;
Synapses
;
Male
;
Female
;
RNA, Messenger/analysis*
3.Application of Targeted mRNA Sequencing in Fusion Genes Diagnosis of Hematologic Diseases.
Man WANG ; Ling ZHANG ; Yan CHEN ; Jun-Dan XIE ; Hong YAO ; Li YAO ; Jian-Nong CEN ; Zi-Xing CHEN ; Su-Ning CHEN ; Hong-Jie SHEN
Journal of Experimental Hematology 2025;33(4):1209-1216
OBJECTIVE:
To explore the application of targeted mRNA sequencing in fusion gene diagnosis of hematologic diseases.
METHODS:
Bone marrow or peripheral blood samples of 105 patients with abnormally elevated eosinophil proportions and 291 acute leukemia patients from January 2015 to June 2023 in the First Affiliated Hospital of Soochow University were analyzed and gene structural variants were detected by targeted mRNA sequencing.
RESULTS:
Among 105 patients with abnormally elevated eosinophil proportions, 6 cases were detected with gene structural variants, among which fusion gene testing results in 5 cases could serve as diagnostic indicators for myeloid neoplasms with eosinophilia. In addition, a IL3∷ETV6 fusion gene was detected in one patient with chronic eosinophilic leukemia, not otherwise specified. Among 119 patients with acute myeloid leukemia (AML), 38 cases were detected structural variants by targeted mRNA sequencing, accounting for 31.9%, which was significantly higher than 20.2% (24/119) detected by multiple quantitative PCR (P < 0.05). We also found one patient with AML had both NUP98∷PRRX2 and KCTD5∷JAK2 fusion genes. A total of 104 patients were detected structural variants by targeted mRNA sequencing in 172 cases with acute B-lymphoblastic leukemia who were tested negative by multiple quantitative PCR, with a detection rate of 60.5% (102/172).
CONCLUSION
Targeted mRNA sequencing can effectively detect fusion gene and has potential clinical application value in diagnosis and classificatation in hematologic diseases.
Humans
;
Hematologic Diseases/diagnosis*
;
RNA, Messenger/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Sequence Analysis, RNA
;
Leukemia, Myeloid, Acute/diagnosis*
4.Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain.
Hao LI ; Ying LI ; Ting WANG ; Shen LI ; Heli LIU ; Shuyi NING ; Wei SHEN ; Zhe ZHAO ; Haitao WU
Neuroscience Bulletin 2025;41(2):224-242
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Animals
;
Receptors, Oxytocin/metabolism*
;
Male
;
Brain/growth & development*
;
Mice
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Single-Cell Analysis
;
Gene Expression Regulation, Developmental
;
RNA, Messenger/metabolism*
;
Animals, Newborn
5.Correlation analysis of cell-free DNA in gingival crevicular fluid with periodontal clinical indicators and cyclic guanosine phosphate-adenosine phosphate synthase-stimulator of interferon genes signaling pathway.
Lan CHEN ; Xuanzhi ZHU ; Jieyu ZHOU ; Jiyao LI ; Lei ZHAO
West China Journal of Stomatology 2025;43(6):808-818
OBJECTIVES:
This study aims to explore the potential relationships of cell-free DNA (cfDNA) in gingival crevicular fluid (GCF) with periodontal clinical indicators and the expression of DNA receptor pathway cyclic guanosine phosphate-adenosine phosphate synthase (cGAS)-stimulator of interferon genes (STING) in gingival tissues and human gingival fibroblasts (HGFs).
METHODS:
GCF and gingival tissue samples were collected from periodontally healthy individuals and patients diagnosed with periodontitis. Periodontal clinical indicators were recorded, including plaque index (PLT), bleeding index (BI), probing depth (PD), and clinical attachment level (CAL). The concentration of cfDNA in GCF was quantified, and the correlation between GCF and periodontal clinical indicators was analyzed. Immunofluorescence and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to assess the distribution of cGAS, STING, and p-STING in gingival tissues. Additionally, the mRNA expression levels of the key components of the cGAS-STING signaling pathway, namely, cGAS, STING, inhibitory of kappa-B kinase (IKK), nuclear factor kappa-B p65 (NF-κB p65), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), were measured. Furthermore, cfDNA extracted from GCF was employed to stimulate HGFs in the healthy control and periodontitis groups, and the mRNA expression levels of the key molecules of cGAS-STING signaling pathway were detected through Western blot and RT-qPCR.
RESULTS:
The concentration of cfDNA in GCF was found to be significantly elevated in the periodontitis group compared with the control group. Moreover, cfDNA concentration demonstrated a strong positive correlation with the periodontal clinical indicators. Immunofluorescence analysis revealed considerably increased percentage of fluorescence co-localization of cGAS, STING, and p-STING with the gingival fibroblast FSP-1 marker in the gingival tissues of the periodontitis group. The mRNA expression levels of cGAS, STING, IKK, NF-κB p65, IL-1β, IL-6,and TNF-α were significantly higher in the periodontitis group. In vitro stimulation of HGFs with GCF-derived cfDNA resulted in increased protein expression of cGAS and p-STING and considerably upregulated the mRNA expression levels of cGAS, STING, IKK, NF-κB p65, IL-1β, IL-6, and TNF-α in the healthy and periodontitis groups compared with the blank group. Correlation analysis showed that the concentration of cfDNA at the sampling site was positively correlated with the mRNA expression levels of cGAS, STING, NF-κB p65, and IL-6 in gingival tissues.
CONCLUSIONS
cfDNA concentrations in the GCF of patients with periodontitis are considerably elevated, and are associated with the activation of the cGAS-STING signaling pathway in HGFs. These findings suggest that cfDNA contributes to the progression of periodontitis.
Humans
;
Gingival Crevicular Fluid/metabolism*
;
Signal Transduction
;
Gingiva/cytology*
;
Nucleotidyltransferases/genetics*
;
Membrane Proteins/genetics*
;
Cell-Free Nucleic Acids/analysis*
;
Fibroblasts/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Periodontitis/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Adult
;
RNA, Messenger/metabolism*
;
Male
;
Female
6.Identifying RNA Modifications by Direct RNA Sequencing Reveals Complexity of Epitranscriptomic Dynamics in Rice.
Feng YU ; Huanhuan QI ; Li GAO ; Sen LUO ; Rebecca NJERI DAMARIS ; Yinggen KE ; Wenhua WU ; Pingfang YANG
Genomics, Proteomics & Bioinformatics 2023;21(4):788-804
Transcriptome analysis based on high-throughput sequencing of a cDNA library has been widely applied to functional genomic studies. However, the cDNA dependence of most RNA sequencing techniques constrains their ability to detect base modifications on RNA, which is an important element for the post-transcriptional regulation of gene expression. To comprehensively profile the N6-methyladenosine (m6A) and N5-methylcytosine (m5C) modifications on RNA, direct RNA sequencing (DRS) using the latest Oxford Nanopore Technology was applied to analyze the transcriptome of six tissues in rice. Approximately 94 million reads were generated, with an average length ranging from 619 nt to 1013 nt, and a total of 45,707 transcripts across 34,763 genes were detected. Expression profiles of transcripts at the isoform level were quantified among tissues. Transcriptome-wide mapping of m6A and m5C demonstrated that both modifications exhibited tissue-specific characteristics. The transcripts with m6A modifications tended to be modified by m5C, and the transcripts with modifications presented higher expression levels along with shorter poly(A) tails than transcripts without modifications, suggesting the complexity of gene expression regulation. Gene Ontology analysis demonstrated that m6A- and m5C-modified transcripts were involved in central metabolic pathways related to the life cycle, with modifications on the target genes selected in a tissue-specific manner. Furthermore, most modified sites were located within quantitative trait loci that control important agronomic traits, highlighting the value of cloning functional loci. The results provide new insights into the expression regulation complexity and data resource of the transcriptome and epitranscriptome, improving our understanding of the rice genome.
RNA
;
Oryza/genetics*
;
RNA, Messenger
;
Gene Expression Profiling
;
Transcriptome
;
Sequence Analysis, RNA
;
High-Throughput Nucleotide Sequencing/methods*
;
RNA Processing, Post-Transcriptional
7.Changes of GSH-PX activity and γ-GCS mRNA expression in serum of workers exposed to manganese.
Kai You YE ; Xiao Xiao LIU ; Yong Qing DIAO ; Qiu Fang XU ; Feng JIN ; Yin Jun PAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):582-585
Objective: To explore the changes of γ-GCS mRNA expression and GSH-PX in serum of workers exposed to manganese in order to provide scientific basis for early diagnosis of manganese poisoning. Methods: In June 2017, a total of 180 workers from a motorcycle manufacturer were selected by stratified random sampling, including 115 welders as the exposure group and 65 administrative office workers as the Control Group, the exposure group was divided into high exposure group (43 persons) and low exposure group (72 persons) according to whether the exposure group exceeded the standard limit. The levels of γ-gcs Mrna expression and GSH-Px activity in serum were determined by Occupational Health Survey, and the differences of γ-gcs Mrna expression and GSH-Px activity among different groups were analyzed. Results: Compared with the control group, the serum GSH-Px activity was lower and the serum γ-GCS mRNA expression level was higher in the exposed group (F=370.52, 275.95, P<0.01) . Compared with the control group, there was significant difference in γ-GCS mRNA expression level and GSH-Px activity (F=0.475、1.06, P<0.01; F=48.53、111.70, P<0.01) . The concentrations of manganese in air, welding dust and urine were positively correlated with the level of γ-GCS mRNA (r=0.71, 0.50, 0.31, P<0.01) The serum GSH-Px activity was negatively correlated with the concentrations of manganese in air, welding dust and urine (r=-0.80, -0.52, -0.30, P< 0.01) , There was no correlation between Serum γ-GSH-Px activity and age and years of exposure (P>0.05) . Conclusion: Serum γ-GCS mRNA expression level and GSH-Px activity level can be used as early biomarkers of manganese poisoning. The concentrations of manganese in workplace air, welding dust and urine manganese in workers are the influencing factors.
Air Pollutants, Occupational
;
Dust
;
Humans
;
Ions
;
Manganese
;
Manganese Poisoning
;
Occupational Exposure/analysis*
;
RNA, Messenger/genetics*
;
Welding
8.Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
Qiao-Ling GU ; Yan ZHANG ; Xi-Mei FU ; Zhao-Lian LU ; Yao YU ; Gen CHEN ; Rong MA ; Wei KOU ; Yong-Mei LAN
Journal of Zhejiang University. Science. B 2020;21(1):77-86
In this study, we aimed to evaluate the toxic effects, changes in life span, and expression of various metabolism-related genes in Caenorhabditis elegans, using RNA interference (RNAi) and mutant strains, after 3-bromopyruvate (3-BrPA) treatment. C. elegans was treated with various concentrations of 3-BrPA on nematode growth medium (NGM) plates, and their survival was monitored every 24 h. The expression of genes related to metabolism was measured by the real-time fluorescent quantitative polymerase chain reaction (qPCR). Nematode survival in the presence of 3-BrPA was also studied after silencing three hexokinase (HK) genes. The average life span of C. elegans cultured on NGM with 3-BrPA was shortened to 5.7 d compared with 7.7 d in the control group. hxk-1, hxk-2, and hxk-3 were overexpressed after the treatment with 3-BrPA. After successfully interfering hxk-1, hxk-2, and hxk-3, the 50% lethal concentration (LC50) of all mutant nematodes decreased with 3-BrPA treatment for 24 h compared with that of the control. All the cyp35 genes tested were overexpressed, except cyp-35B3. The induction of cyp-35A1 expression was most obvious. The LC50 values of the mutant strains cyp-35A1, cyp-35A2, cyp-35A4, cyp-35B3, and cyp-35C1 were lower than that of the control. Thus, the toxicity of 3-BrPA is closely related to its effect on hexokinase metabolism in nematodes, and the cyp-35 family plays a key role in the metabolism of 3-BrPA.
Animals
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/genetics*
;
Cytochrome P-450 Enzyme System/genetics*
;
Hexokinase/physiology*
;
Pyruvates/toxicity*
;
RNA, Messenger/analysis*
9.NFATC3–PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines.
Jee Eun JANG ; Hwang Phill KIM ; Sae Won HAN ; Hoon JANG ; Si Hyun LEE ; Sang Hyun SONG ; Duhee BANG ; Tae You KIM
Cancer Research and Treatment 2019;51(1):391-401
PURPOSE: This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer (CRC) lines. MATERIALS AND METHODS: We performed paired-end RNA sequencing of 28 CRC cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. RESULTS: One thousand three hundred eighty FT candidates were detected through bioinformatics filtering. We selected six candidate FTs, including four inter-chromosomal and two intrachromosomal FTs and each FT was found in at least one of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3–PLA2G15 FT was found in two. Knockdown of NFATC3–PLA2G15 using siRNA reduced mRNA expression of epithelial–mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal–epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3–PLA2G15 FT. The NFATC3–PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. CONCLUSION: These results suggest that that NFATC3–PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.
Cadherins
;
Cell Line*
;
Cell Movement
;
Cell Proliferation
;
Claudin-1
;
Colorectal Neoplasms*
;
Computational Biology
;
Fibronectins
;
Humans
;
RNA*
;
RNA, Messenger
;
RNA, Small Interfering
;
Sequence Analysis, RNA*
;
Vimentin
10.Sulfuretin Prevents Obesity and Metabolic Diseases in Diet Induced Obese Mice.
Suji KIM ; No Joon SONG ; Seo Hyuk CHANG ; Gahee BAHN ; Yuri CHOI ; Dong Kwon RHEE ; Ui Jeong YUN ; Jinhee CHOI ; Jeon LEE ; Jae Hyuk YOO ; Donghan SHIN ; Ki Moon PARK ; Hee KANG ; Sukchan LEE ; Jin Mo KU ; Yoon Shin CHO ; Kye Won PARK
Biomolecules & Therapeutics 2019;27(1):107-116
The global obesity epidemic and associated metabolic diseases require alternative biological targets for new therapeutic strategies. In this study, we show that a phytochemical sulfuretin suppressed adipocyte differentiation of preadipocytes and administration of sulfuretin to high fat diet-fed obese mice prevented obesity and increased insulin sensitivity. These effects were associated with a suppressed expression of inflammatory markers, induced expression of adiponectin, and increased levels of phosphorylated ERK and AKT. To elucidate the molecular mechanism of sulfuretin in adipocytes, we performed microarray analysis and identified activating transcription factor 3 (Atf3) as a sulfuretin-responsive gene. Sulfuretin elevated Atf3 mRNA and protein levels in white adipose tissue and adipocytes. Consistently, deficiency of Atf3 promoted lipid accumulation and the expression of adipocyte markers. Sulfuretin’s but not resveratrol’s anti-adipogenic effects were diminished in Atf3 deficient cells, indicating that Atf3 is an essential factor in the effects of sulfuretin. These results highlight the usefulness of sulfuretin as a new anti-obesity intervention for the prevention of obesity and its associated metabolic diseases.
Activating Transcription Factor 3
;
Adipocytes
;
Adiponectin
;
Adipose Tissue, White
;
Animals
;
Diet*
;
Insulin Resistance
;
Metabolic Diseases*
;
Mice
;
Mice, Obese*
;
Microarray Analysis
;
Obesity*
;
RNA, Messenger

Result Analysis
Print
Save
E-mail