1.Effects of acupuncture on podocyte autophagy and the LncRNA SOX2OT/mTORC1/ULK1 pathway in rats with diabetic kidney disease.
Xu WANG ; Yue ZHANG ; Hongwei LI ; Handong LIU ; Jie LI ; Ying FAN ; Zhilong ZHANG
Chinese Acupuncture & Moxibustion 2025;45(10):1450-1458
OBJECTIVE:
To observe the effects of acupuncture on podocyte autophagy and long non-coding RNA SOX2 overlapping transcript (LncRNA SOX2OT)/mammalian target of rapamycin C1 (mTORC1)/Unc-51-like kinase 1 (ULK1) pathway in rats with diabetic kidney disease (DKD), and to explore the mechanism by which acupuncture reduces urinary protein.
METHODS:
A total of 40 SPF-grade male Sprague-Dawley rats were randomly divided into a control group (n=10) and a modeling group (n=30). The DKD model was established by feeding a high-fat, high-sugar diet combined with intraperitoneal injection of streptozotocin (STZ) in the modeling group. Twenty rats with successful DKD model were randomly divided into a model group (n=10) and an acupuncture group (n=10). The acupuncture group received "spleen and stomach-regulating" acupuncture at bilateral "Zusanli" (ST36), "Fenglong" (ST40), "Yinlingquan" (SP9), and "Zhongwan" (CV12), 30 min per session, once daily, five times per week, for four weeks. The general condition, fasting blood glucose (FBG), 2-hour postprandial glucose (2hPG), serum creatinine (SCr), blood urea nitrogen (BUN), 24-hour urinary protein quantification, and urine albumin-to-creatinine ratio (UACR) were compared before and after the intervention. After intervention, urinary podocyte injury marker SPON2 was measured by ELISA. Podocyte autophagosomes and glomerular basement membrane ultrastructure in renal tissue were observed via transmission electron microscopy. Podocyte apoptosis was assessed by TUNEL staining. The protein expression of microtubule-associated protein 1 light chain 3Ⅱ (LC3-Ⅱ), mTORC1, ULK1, Beclin-1, and p62 in renal tissue was detected by Western blot. LncRNA SOX2OT expression in renal tissue was measured by real-time PCR.
RESULTS:
After the intervention, compared with the control group, the model group exhibited increased food and water intake, increased urine output, weight loss, and loose stools; compared with the model group, the food and water intake, urine volume, and loose stools were improved in the acupuncture group. Compared with the control group, FBG, 2hPG, SCr, BUN, 24-hour urinary protein quantification, UACR, and urinary SPON2 were all higher in the model group (P<0.01); compared with the model group, the FBG, 2hPG, SCr, BUN, 24-hour urinary protein quantification, UACR, and urinary SPON2 were all lower in the acupuncture group (P<0.01). Compared with the control group, the model group showed reduced podocyte autophagosomes and thickened glomerular basement membrane; compared with the model group, the acupuncture group had increased podocyte autophagosomes and less thickened basement membrane. Compared with the control group, the podocyte apoptosis index (AI) was higher in the model group (P<0.01); compared with the model group, the AI was lower in the acupuncture group (P<0.01). Compared with the control group, the expression of ULK1, Beclin-1, and LC3-Ⅱ proteins was lower, and the expression of mTORC1 and p62 proteins was higher in the model group (P<0.01). Compared with the model group, the expression of ULK1, Beclin-1, and LC3-Ⅱ proteins was higher, and the expression of mTORC1 and p62 proteins was lower in the acupuncture group (P<0.01). Compared with the control group, the LncRNA SOX2OT expression was lower in the model group (P<0.01). Compared with the model group, LncRNA SOX2OT expression was higher in the acupuncture group (P<0.01).
CONCLUSION
The "spleen and stomach-regulating" acupuncture method could improve renal function in DKD rats, reduce blood glucose and urinary protein excretion, alleviate podocyte injury, and enhance podocyte autophagy. The mechanism may be related to modulation of the renal LncRNA SOX2OT/mTORC1/ULK1 pathway.
Animals
;
Podocytes/cytology*
;
Diabetic Nephropathies/physiopathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Mechanistic Target of Rapamycin Complex 1/genetics*
;
Autophagy
;
Acupuncture Therapy
;
Autophagy-Related Protein-1 Homolog/genetics*
;
RNA, Long Noncoding/metabolism*
;
Humans
;
Signal Transduction
2.Small nucleolar RNA host gene 1 (SNHG1) facilitates gemcitabine chemosensitivity in gallbladder cancer by regulating the miR-23b-3p/phosphatase and tensin homolog (PTEN) pathway.
Hui WANG ; Yixiang GU ; Miaomiao GUO ; Ming ZHAN ; Min HE ; Yang ZHANG ; Linhua YANG ; Yingbin LIU
Chinese Medical Journal 2025;138(21):2783-2792
BACKGROUND:
Growing evidence suggests that long non-coding RNAs (lncRNAs) exert pivotal roles in fostering chemoresistance across diverse tumors. Nevertheless, the precise involvement of lncRNAs in modulating chemoresistance within the context of gallbladder cancer (GBC) remains obscure. This study aimed to uncover how lncRNAs regulate chemoresistance in gallbladder cancer, offering potential targets to overcome drug resistance.
METHODS:
To elucidate the relationship between gemcitabine sensitivity and small nucleolar RNA host gene 1 ( SNHG1 ) expression, we utilized publicly available GBC databases, GBC tissues from Renji Hospital collected between January 2017 and December 2019, as well as GBC cell lines. The assessment of SNHG1, miR-23b-3p, and phosphatase and tensin homolog (PTEN) expression was performed using in situ hybridization, quantitative real-time polymerase chain reaction, and western blotting. The cell counting kit-8 (CCK-8) assay was used to quantify the cell viability. Furthermore, a GBC xenograft model was employed to evaluate the impact of SNHG1 on the therapeutic efficacy of gemcitabine. Receiver operating characteristic (ROC) curve analyses were executed to assess the specificity and sensitivity of SNHG1.
RESULTS:
Our analyses revealed an inverse correlation between the lncRNA SNHG1 and gemcitabine resistance across genomics of drug sensitivity in cancer (GDSC) and Gene Expression Omnibus (GEO) datasets, GBC cell lines, and patients. Gain-of-function investigations underscored that SNHG1 heightened the gemcitabine sensitivity of GBC cells in both in vitro and in vivo settings. Mechanistic explorations illuminated that SNHG1 could activate PTEN -a commonly suppressed tumor suppressor gene in cancers-thereby curbing the development of gemcitabine resistance in GBC cells. Notably, microRNA (miRNA) target prediction algorithms unveiled the presence of miR-23b-3p binding sites within SNHG1 and the 3'-untranslated region (UTR) of PTEN . Moreover, SNHG1 acted as a sponge for miR-23b-3p, competitively binding to the 3'-UTR of PTEN , thereby amplifying PTEN expression and heightening the susceptibility of GBC cells to gemcitabine.
CONCLUSION
The SNHG1/miR-23b-3p/PTEN axis emerges as a pivotal regulator of gemcitabine sensitivity in GBC cells, holding potential as a promising therapeutic target for managing GBC patients.
Humans
;
Deoxycytidine/pharmacology*
;
PTEN Phosphohydrolase/genetics*
;
Gemcitabine
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/genetics*
;
Gallbladder Neoplasms/genetics*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Drug Resistance, Neoplasm/genetics*
;
Mice, Nude
;
Antimetabolites, Antineoplastic
;
Gene Expression Regulation, Neoplastic
3.Long non-coding RNA PVT1 mediates bile acid-induced gastric intestinal metaplasia via a miR-34b-5p/HNF4α positive feedback loop.
Kexin LIN ; Nuo YAO ; Xingyu ZHAO ; Xiaodong QU ; Xuezhi LI ; Songbo LI ; Shiyue LUO ; Min CHEN ; Na WANG ; Yongquan SHI
Chinese Medical Journal 2025;138(18):2324-2335
BACKGROUND:
Bile acids (BAs) facilitate the progression of gastric intestinal metaplasia (GIM). Long non-coding RNAs (lncRNAs) dysregulation was observed along with the initiation of gastric cancer. However, how lncRNAs function in GIM remains unclear. This study aimed to explore the role and mechanism of lncRNA PVT1 in GIM, and provide a potential therapeutic target for GIM treatment.
METHODS:
We employed RNA sequencing (RNA-seq) to screen dysregulated lncRNAs in gastric epithelial cells after BA treatment. Bioinformatics analysis was conducted to reveal the regulatory mechanism. PVT1 expression was detected in 21 paired biopsies obtained under endoscopy. Overexpressed and knockdown cell models were established to explore gene functions in GIM. Molecular interactions were validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (Ch-IP). The levels of relative molecular expression were detected in GIM tissues.
RESULTS:
We confirmed that lncRNA PVT1 was upregulated in BA-induced GIM model. PVT1 promoted the expression of intestinal markers such as CDX2 , KLF4 , and HNF4α . Bioinformatics analysis revealed that miR-34b-5p was a putative target of PVT1 . miR-34b-5p mimics increased CDX2 , KLF4 , and HNF4α levels. Restoration of miR-34b-5p decreased the pro-metaplastic effect of PVT1 . The interactions between PVT1 , miR-34b-5p, and the downstream target HNF4α were validated. Moreover, HNF4α could transcriptionally activated PVT1 , sustaining the GIM phenotype. Finally, the activation of the PVT1 /miR-34b-5p/ HNF4α loop was detected in GIM tissues.
CONCLUSIONS
BAs facilitate GIM partially via a PVT1/miR-34b-5p/HNF4α positive feedback loop. PVT1 may become a novel target for blocking the continuous development of GIM and preventing the initiation of gastric cancer in patients with bile reflux.
Humans
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/metabolism*
;
Hepatocyte Nuclear Factor 4/genetics*
;
Bile Acids and Salts
;
Kruppel-Like Factor 4
;
Metaplasia/metabolism*
4.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
5.Research progress on role of competitive endogenous RNA networks in heart failure and intervention by traditional Chinese medicine.
Pei-Li YANG ; Li-Rong ZHENG ; Ying-Qiang ZHAO
China Journal of Chinese Materia Medica 2025;50(12):3232-3243
Heart failure(HF) is the terminal stage of various cardiovascular diseases, characterized by high morbidity and mortality, and it represents one of the major disease burdens for families and society. In recent years, as research on the molecular mechanisms of HF has deepened, a competing endogenous RNA(ceRNA) network mediated by long non-coding RNAs(lncRNAs) and circular RNAs(circRNAs) has been gradually constructed. Extensive research results have confirmed that the ceRNA network is widely involved in pathological processes such as inflammation, oxidative stress, myocardial hypertrophy, apoptosis, remodeling of extracellular matrix components and structure, and ferroptosis in HF. It reveals the complex pathological mechanisms of HF at the epigenetic level. Traditional Chinese medicine(TCM) plays a unique role in improving symptoms and prognosis of HF and intervenes in the ceRNA network in HF through multi-level and multi-target mechanisms. It improves key pathological processes such as myocardial fibrosis and inflammation, making progress in treating HF at the molecular level. This article summarized recent Chinese and international research on the regulatory mechanisms of ceRNA networks in HF, elaborated on the mechanisms of action of ceRNA networks in different pathological stages of HF, and summarized how effective components and compounds of TCM intervene in the ceRNA network to improve HF, so as to refine the molecular mechanisms of HF and provide directions for more precise molecular targeted therapeutic strategies.
Humans
;
Heart Failure/metabolism*
;
Medicine, Chinese Traditional
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
RNA, Circular/genetics*
;
RNA, Long Noncoding/metabolism*
;
Gene Regulatory Networks/drug effects*
;
RNA/metabolism*
;
RNA, Competitive Endogenous
6.Effect of stretch on taurine upregulated gene 1-mediated miR-545-3p/cannbinoida receptor 2 pathway regulating distraction osteogenesis in rats.
Mengzhu ZHANG ; Bin WANG ; Zixin WANG ; Yalong WU ; Yongxin ZHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):598-604
OBJECTIVE:
To investigate the effect of stretch on long non-coding RNA taurine upregulated gene 1 (TUG1)-mediated miR-545-3p/cannbinoida receptor 2 (CNR2) pathway regulating bone regeneration in the distraction area of rats during distraction osteogenesis.
METHODS:
Thirty-six 10-week-old male Sprague Dawley rats were randomly divided into 3 groups ( n=12 in each group): group A (femoral fracture+injection of interfering RNA), group B (distraction osteogenesis+injection of interfering RNA), and group C (distraction osteogenesis+injection of TUG1). Groups A and B were injected with 60 μg of interfering RNA at the beginning of incubation period (immediate after operation), the beginning of distraction phase (7 days after operation), and the end of distraction phase (21 days after operation), and group C was injected with 60 μg of synthetic TUG1 in vivo interfering sequence at the same time. The general situation of rats in each group was observed during the experiment. The mineralization of fracture space or distraction area was observed by X-ray films at 21, 35, and 49 days after operation. At 49 days after operation, the samples of the distraction area were taken for HE staining to observe the mineralization, and real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expressions of osteoblast-related genes such as TUG1, miR-545-3p, CNR2, alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Blood samples were collected from the abdominal aorta of the rats, and the expressions of ALP and C terminal telopeptide of type Ⅰ (CTX-Ⅰ) protein were detected by ELISA assay.
RESULTS:
The results of X-ray film and HE staining observations showed that osteogenesis in group C was superior to groups A and B at the same time point. The results of qRT-PCR showed that the relative mRNA expressions of TUG1, CNR2, ALP, OCN, and OPN in group C were significantly higher than those in group A and group B, and the relative mRNA expression of miR-545-3p in group C was significantly lower than that in group A and group B ( P<0.05). The relative mRNA expressions of TUG1 and ALP in group B were significantly higher than those in group A, and the relative mRNA expression of miR-545-3p in group B was significantly lower than that in group A ( P<0.05). There was no significant difference in the relative mRNA expressions of CNR2, OCN, and OPN between group A and group B ( P>0.05). The results of ELISA showed that the expressions of ALP and CTX-Ⅰ protein were significantly higher in group C than in group A and group B, and in group B than in group A ( P<0.05).
CONCLUSION
Under the action of stretch, the expression of TUG1 in the femoral distraction area of rats increases, which promotes the expression of CNR2 by inhibiting the expression of miR-545-3P, which is helpful to the mineralization of the extension area and osteogenesis.
Animals
;
MicroRNAs/genetics*
;
Rats, Sprague-Dawley
;
Male
;
Osteogenesis, Distraction/methods*
;
Rats
;
RNA, Long Noncoding/metabolism*
;
Osteopontin/genetics*
;
Osteogenesis
;
Bone Regeneration
;
RNA, Small Interfering/genetics*
;
Osteocalcin/genetics*
;
Alkaline Phosphatase/metabolism*
;
Osteoblasts/cytology*
;
Signal Transduction
;
Femoral Fractures/surgery*
7.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
8.Potential molecular mechanism of lncRNAs HOTAIR in malignant metastasis of esophageal cancer.
Kaijin LU ; Jiangfeng SHEN ; Guang HAN ; Quan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):236-244
Objective To elucidate the molecular mechanism by which exosomes (Exo) derived from cancer-associated fibroblasts (CAF) carrying HOX transcript antisense intergenic RNA (lncRNA HOTAIR) promote the metastasis of esophageal squamous cell carcinoma (ESCC). Methods CAFs were collected from tumor tissues, and non-cancer associated fibroblasts (NFs) were obtained from adjacent normal tissues at least 5 cm away from the tumor. Exosomes (CAFs-Exo and NFs-Exo) were isolated from conditioned media collected from CAFs or NFs. CAFs-Exo and NFs-Exo were incubated with human ESCC cell line TE-1 for 24 hours, and CCK-8 was used to determine the cell proliferation ability. Scratch test and Transwell test were performed to determine the cell migration and invasion ability. TE-1 cells were divided into the following two groups: NC group and KD group. The NC group and KD group were transfected with control siRNAs or siRNAs targeting HOTAIR respectively. The effects of HOTAIR knock-down on cell proliferation, migration, invasion and glycolysis were determined. Results CAFs-Exo promoted the proliferation of TE-1 cells more significantly than NFs-Exo. Compared with NFs-Exo group, the migration and invasion ability of TE-1 cells treated with CAFs-Exo were improved significantly. In addition, CAFs-Exo treatment inhibited the expression of E-cadherin and enhanced the expression of N-cadherin. The expression of HOTAIR in CAFs was significantly higher than that in NFs. Compared with NFs-Exo, the expression level of HOTAIR in CAFs-Exo increased significantly. Compared with NC group, the proliferation, migration and invasion of TE-1 cells in KD group decreased significantly. Compared with NC group, hexokinase 2 (HK2), extracellular acidification rate (ECAR) and ATP/ADP ratio of TE-1 cells in KD group decreased significantly. Conclusion HOTAIR, an exosome derived from CAFs, may be involved in metastasis and EMT by regulating glycolysis in ESCC cells.
Humans
;
RNA, Long Noncoding/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Esophageal Squamous Cell Carcinoma
;
Exosomes/genetics*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Glycolysis/genetics*
;
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Cadherins/genetics*
9.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
10.Effect and mechanism of LncRNA EFRL on homocysteine-induced atherosclerosis in macrophage efferocytosis.
Jiaqi YANG ; Zhenghao ZHANG ; Fang MA ; Tongtong XIA ; Honglin LIU ; Jiantuan XIONG ; Shengchao MA ; Yideng JIANG ; Yinju HAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):577-584
Objective To investigate the effect and mechanism of Efferocytosis Relatived LncRNA (EFRL) on homocysteine-induced atherosclerosis in macrophage efferocytosis. Methods RAW264.7 cells were cultured in vitro, and the Control group (0 μmol/L Hcy) and Hcy intervention group (100 μmol/L Hcy) were set up. After GapmeR transfection of macrophages with Hcy intervention, EFRL knockdown negative control group (Hcy combined with LNA-NC) and EFRL knockdown group (Hcy combined with LNA-EFRL) were set up. High-throughput sequencing was applied for different expression of LncRNA MSTRG. 88917.16 (EFRL), UCSC was used to analyze its conservation, CPC and CPAT were used to analyze its ability to encode proteins, and GO and KEGG were used to analyze related biological functions. The localization of LncRNA EFRL in macrophages was analyzed by nucleoplasmic separation and RNA-FISH. Quantitative real-time PCR was used to detect the expression levels of LncRNA EFRL and its target gene SPAST in Hcy-treated macrophages. The apoptosis rate of Jurkat cells induced by UV was detected by flow cytometry. In vitro efferocytosis assay combined with immunofluorescence technique was used to analyze macrophage efferocytosis. ELISA was used to detect the levels of interleukin 1β(IL-1β) and IL-18. Results The new LncRNA MSTRG.88917.16 was identified and named EFRL(Efferocytosis Relatived LncRNA). UCSC, CPC and CPAT analyses showed that LncEFRL is highly conserved and does not have the ability to encode proteins. GO and KEGG analyses suggested that LncEFRL may be involved in macrophage efferocytosis. LncRNA EFRL was localized in the nucleus of macrophages as determined by nucleoplasmic separation and RNA-FISH. In comparison to the Control group, the expression levels of LncRNA EFRL and its target gene SPAST in the Hcy group were increased. In comparison to the Control group (0 min), the apoptosis rate of the experimental group (15, 30 min) Annexin V is more than 85%. Compared with Hcy combined with LNA-NC group, Hcy combined with LNA-EFRL group had enhanced macrophage efferocytosis and reduced levels of inflammatory factors. Compared with Hcy combined with LNA-NC group, the expression level of SPAST in Hcy combined with LNA-EFRL group was decreased. Conclusion Inhibition of EFRL expression can alleviate the process of Hcy inhibiting macrophage efferocytosis, and the mechanism is related to the regulation of the downstream target gene SPAST by EFRL.
RNA, Long Noncoding/physiology*
;
Animals
;
Homocysteine
;
Mice
;
Macrophages/drug effects*
;
Humans
;
RAW 264.7 Cells
;
Atherosclerosis/chemically induced*
;
Apoptosis/genetics*
;
Phagocytosis/genetics*
;
Jurkat Cells
;
Interleukin-1beta/genetics*
;
Efferocytosis

Result Analysis
Print
Save
E-mail