1.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
2.The function of circular RNA-microRNA-messenger RNA immune regulatory network in childhood allergic asthma.
Sai-Hua HUANG ; Jin-Tao ZHOU ; Yan WANG ; Xiao HAN
Chinese Journal of Contemporary Pediatrics 2025;27(8):936-944
OBJECTIVES:
To investigate the potential circular RNA (circRNA)-microRNA (miRNA)-messenger RNA (mRNA) immune regulatory network in childhood allergic asthma by analyzing microarray datasets.
METHODS:
GEO database was used to obtain the datasets of circRNA, miRNA, and mRNA from children with allergic asthma and healthy controls. The Limma package was used to identify differentially expressed circRNA (DEcircRNA), miRNA (DEmiRNA), and mRNA (DEmRNA). ENCORI and other tools were used to predict and construct the regulatory network of endogenous RNA. The DAVID database was used to perform GO and KEGG enrichment analyses, and CIBERSORT and Pearson were used to identify genes associated with immune cell infiltration.
RESULTS:
A total of 130 DEcircRNAs, 40 DEmiRNAs, and 802 DEmRNAs were identified between the asthma and control groups, and a regulatory network consisting of 12 circRNAs, 7 miRNAs, and 75 mRNAs was established. The GO analysis showed that the differentially expressed genes were mainly involved in the regulation of growth and development, and the KEGG analysis showed that they were mainly involved in the mTOR signaling pathway. The CIBERSORT analysis showed that compared with the control group, the asthma group had higher percentages of CD8+ T cells and resting NK cells and lower percentages of resting CD4+ memory T cells and activated mast cells. In addition, the Pearson correlation analysis identified six key mRNAs that were positively correlated with immune cell infiltration.
CONCLUSIONS
The ceRNA immune regulatory network constructed in this study provides a basis for research on the mechanism of childhood allergic asthma and potential therapeutic targets.
Humans
;
Asthma/genetics*
;
RNA, Circular/physiology*
;
MicroRNAs/physiology*
;
Child
;
Gene Regulatory Networks
;
RNA, Messenger/physiology*
;
RNA/physiology*
;
Male
;
Female
;
Child, Preschool
3.Progress in circular RNAs of plants.
Zhenzhen CHANG ; Guizhi GONG ; Zhuchun PENG ; Cheng YANG ; Qibin HONG
Chinese Journal of Biotechnology 2022;38(5):1706-1723
With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.
Animals
;
MicroRNAs/metabolism*
;
Organelle Biogenesis
;
Plants/metabolism*
;
Protein Biosynthesis/physiology*
;
RNA, Circular/metabolism*
;
RNA, Plant/metabolism*
;
Research/trends*
;
Stress, Physiological/genetics*

Result Analysis
Print
Save
E-mail