1.Exploring local microbial communities in adenoids through 16S rRNA gene sequencing.
Luohua YUAN ; Haibing LIU ; Wenli LI ; Zhonghua PENG ; Yuling MA ; Jian ZOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):51-56
Objective:To explore the hypothesis of "pathogen storage pool" by analyzing the local microbial community of adenoids. Methods:Under the guidance of a 70° nasal endoscope, sterile swabs were used to collect secretions from the adenoid crypts of the subjects. The samples were sent to the laboratory for DNA extraction and standard bacterial 16S full-length sequencing analysis. Results:At the species level, the top three microbial communities in adenoid crypts were Bacillus subtilis(18.78%), Fusobacterium pyogenes(11.42%), and Streptococcus pneumoniae(9.38%). Conclusion:The local microbial community of adenoids exhibits a high degree of diversity, including microbial communities from the oral cavity and gastrointestinal tract. Our research results support the hypothesis that adenoids act as a " pathogen reservoir".
Humans
;
Adenoids/microbiology*
;
RNA, Ribosomal, 16S/genetics*
;
Microbiota/genetics*
;
Streptococcus pneumoniae/isolation & purification*
;
Bacillus subtilis/genetics*
;
DNA, Bacterial/analysis*
2.Evaluation of Multidrug Resistant Loop-mediated Isothermal Amplification Assay for Detecting the Drug Resistance of
Chun Fa LIU ; Yi Meng SONG ; Ping HE ; Dong Xin LIU ; Wen Cong HE ; Yan Ming LI ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2021;34(8):616-622
Objective:
To evaluate multidrug resistant loop-mediated isothermal amplification (MDR-LAMP) assay for the early diagnosis of multidrug-resistant tuberculosis and to compare the mutation patterns associated with the
Methods:
MDR-LAMP assay was evaluated using 100
Results:
The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MDR-LAMP were 85.5%, 93.6%, 96.7%, and 74.4% for the detection of resistance to isoniazid and rifampicin, respectively, and 80.5%, 92.3%, 98.6%, and 41.4% for the detection of
Conclusion
MDR-LAMP is a rapid and accessible assay for the laboratory identification of rifampicin and isoniazid resistance of
Antitubercular Agents
;
Bacterial Proteins/genetics*
;
Catalase/genetics*
;
DNA, Bacterial/analysis*
;
DNA-Directed RNA Polymerases/genetics*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Isoniazid
;
Molecular Diagnostic Techniques/methods*
;
Mutation
;
Mycobacterium tuberculosis/isolation & purification*
;
Nucleic Acid Amplification Techniques/methods*
;
Oxidoreductases/genetics*
;
Phenotype
;
Rifampin
;
Whole Genome Sequencing
3.Quantification of microbial DNA in laboratory environment during DNA extraction.
Tianda CHEN ; Tingting ZHANG ; Yanan YANG ; Bowen ZHAO ; Chongming WU
Chinese Journal of Biotechnology 2020;36(12):2541-2547
Metagenomic sequencing provides a powerful tool for microbial research. However, traditional experimental DNA extraction process will inevitably mix with environmental microorganisms which float in the air. It is still unclear whether the mixed environmental microbial DNA will heavily affect the metagenomic results of samples with extremely low microbial content. In this study, we first collected environmental bacteria in the laboratory and quantified the mixed environmental microbial DNA content during DNA extraction based on a qPCR-based quantification assay. We then extracted DNA from pure water in order to determine the mixed microbial taxons during extraction under open environment. At last, we extracted total DNA from a skin sample in a Biosafety cabinet or under open laboratory environment, to assess the impact of the mixed environmental microorganisms on the metagenomic results. Our results showed that DNA extraction under open laboratory environment in Beijing region resulted in 28.9 pg contaminant, which may accout for 30% of total DNA amount from skin samples. Metagenomic analysis revealed that the main incorporated environmental taxons were Cutibacterium acnes and Escherichia coli. Tens of environmental bacteria were foisted in the skin DNA samples, which largely decreased the relative abundance of dominant species and thus deteriorated the result accuracy. Therefore, analyzing microbial composition of samples with extremely low DNA content should better performed under aseptic environment.
DNA
;
DNA, Bacterial/genetics*
;
Laboratories
;
Metagenomics
;
RNA, Ribosomal, 16S
;
Sequence Analysis, DNA
4.Analysis of the genome sequencing data of the Marinobacterium genus.
Mengru WANG ; Wei XI ; Zhengjun LI
Chinese Journal of Biotechnology 2020;36(12):2695-2706
The marine genus Marinobacterium was first identified in 1997, and a total of 18 species have been characterized so far, 10 of which have published whole-genome sequencing data. This article summarizes the characteristics of Marinobacterium genus and analyzes the genome sequencing data related to the carbon source utilization, polyhydroxyalkanoate metabolism, and aromatic compounds degradation. The Marinobacterium species possess the complete glycolysis pathway and tricarboxylic acid cycle, yet lack genes involved in xylose utilization. All strains of the Marinobacterium genus contain the genes encoding for the typeⅠand type Ⅲ polyhydroxyalkanoate synthases, suggesting that the genus may have ability of polyhydroxyalkanoate accumulation. The Marinobacterium species contain the degradation pathways of aromatic compounds. Benzene, phenol and benzoic acid can be degraded into catechol via different enzymes, subsequently catechol is converted to 3-ketoadipate through the ortho-cleavage pathway. Alternatively, catechol can be degraded into pyruvate and acetyl-CoA. The analysis of genome sequencing data of the Marinobacterium genus provides in-depth understanding of the metabolic characteristics, indicating that the genus may have certain applications in the synthesis of polyhydroxyalkanoate and the removal of marine aromatic compounds.
Alteromonadaceae
;
DNA, Bacterial
;
Phylogeny
;
RNA, Ribosomal, 16S
;
Sequence Analysis, DNA
5.Distribution of Microbiota in Fine Particulate Matter Particles in Guangzhou, China.
Shi Rui DONG ; Ya Jing HAN ; Jing WU ; Cheng Li ZENG ; Ke Hui ZHU ; Xiao Jing CHEN ; Yu Mei LIU ; Xiao Qian ZOU ; Shao Ling ZHENG ; Zi Hao WEN ; Dan Dan LIU ; Yao WANG ; Xiu Xia HUANG ; Xiu Ben DU ; Jian Lei HAO ; Huan Yu WANG ; Shu GUO ; Chun Xia JING ; Guang YANG
Biomedical and Environmental Sciences 2020;33(5):306-314
Objective:
High PM concentration is the main feature of increasing haze in developing states, but information on its microbial composition remains very limited. This study aimed to determine the composition of microbiota in PM in Guangzhou, a city located in the tropics in China.
Methods:
In Guangzhou, from March 5 to 10 , 2016, PM was collected in middle volume air samplers for 23 h daily. The 16S rDNA V4 region of the PM sample extracted DNA was investigated using high-throughput sequence.
Results:
Among the Guangzhou samples, , , , , and were the dominant microbiota accounting for more than 90% of the total microbiota, and was the dominant gram-negative bacteria, accounting for 21.30%-23.57%. We examined the difference in bacterial distribution of PM between Beijing and Guangzhou at the genus level; was found in both studies, but was only detected in Guangzhou.
Conclusion
In conclusion, the diversity and specificity of microbial components in Guangzhou PM were studied, which may provide a basis for future pathogenicity research in the tropics.
Air Microbiology
;
Air Pollutants
;
analysis
;
Bacteria
;
classification
;
isolation & purification
;
China
;
Cities
;
Environmental Monitoring
;
Microbiota
;
Particle Size
;
Particulate Matter
;
analysis
;
RNA, Bacterial
;
analysis
;
RNA, Ribosomal, 16S
;
analysis
6.Prevalence of Opportunistic Pathogens and Diversity of Microbial Communities in the Water System of a Pulmonary Hospital.
Wei TANG ; Yu MAO ; Qiu Yan LI ; Die MENG ; Ling CHEN ; Hong WANG ; Ren ZHU ; Wei Xian ZHANG
Biomedical and Environmental Sciences 2020;33(4):248-259
Objective:
Our objective was to investigate the occurrence of opportunistic pathogens and characterize the bacterial community structures in the water system of a pulmonary hospital.
Methods:
The water samples were collected from automatic and manual faucets in the consulting room, treatment room, dressing room, respiratory ward, and other non-medical rooms in three buildings of the hospital. Quantitative polymerase chain reaction was used to quantify the load of several waterborne opportunistic pathogens and related microorganisms, including spp., spp., and . Illumina sequencing targeting 16S rRNA genes was performed to profile bacterial communities.
Results:
The occurrence rates of spp., spp., and were 100%, 100%, and 76%, respectively in all samples. Higher occurrence rates of were observed in the outpatient service building (building 1, 91.7%) and respiration department and wards (building 2, 80%) than in the office building (building 3), where no was found. were more abundant in automatic faucets (average 2.21 × 10 gene copies/L) than in manual faucets (average 1.03 × 10 gene copies/mL) ( < 0.01). , , , , , and were the dominant bacterial phyla. Disinfectant residuals, nitrate, and temperature were found to be the key environmental factors driving microbial community structure shifts in water systems.
Conclusion
This study revealed a high level of colonization of water faucets by opportunistic pathogens and provided insight into the characteristics of microbial communities in a hospital water system and approaches to reduce risks of microbial contamination.
China
;
Drinking Water
;
microbiology
;
Genes, Bacterial
;
Hospitals
;
Legionella
;
isolation & purification
;
Microbiota
;
Mycobacterium
;
isolation & purification
;
Mycobacterium avium
;
isolation & purification
;
RNA, Bacterial
;
analysis
;
RNA, Ribosomal, 16S
;
analysis
;
Water Quality
;
Water Supply
7.Whole Genome Sequence Determination and Analysis of Strain CGMCC 12426.
Hui DONG ; Xuan Hao LI ; Jing Lin CHANG ; Xin HE ; Qin Lian HOU ; Wei LONG
Acta Academiae Medicinae Sinicae 2019;41(3):307-314
Objective To describe the microbiological characteristics of ()CGMCC 12426 and determine and analyze its complete genome sequences.Methods strain CGMCC 12426 genomic DNA sequencing was performed on a single molecule real-time sequencing(SMRT)platform and the annotation was completed in the NCBI Prokaryotic Genomic Annotation Pipeline(pGAP).Results The complete genomic sequences of the released CGMCC 12426 consisted of a 4 138 265-bp circular chromosome and a 74 165-bp plasmid,which resulted in the prediction of 4581 genes including 4222 coding sequences,87 tRNAs,and 30 rRNAs(which included 5S rRNA,16S rRNA,and 23S rRNA).Conclusion The genome sequencing provided a basis for further investigations on the genetic background of and on the metabolic and regulatory mechanisms.
Bacillus subtilis
;
genetics
;
Genome, Bacterial
;
Plasmids
;
RNA, Ribosomal, 16S
;
genetics
;
RNA, Ribosomal, 23S
;
genetics
;
RNA, Ribosomal, 5S
;
genetics
;
Sequence Analysis, DNA
8.A two-component signal transduction system contributes to the virulence of Riemerella anatipestifer
Qing WANG ; Mianmian CHEN ; Wei ZHANG
Journal of Veterinary Science 2018;19(2):260-270
Similar to other studies of bacterial pathogens, current studies of the pathogenesis of Riemerella anatipestifer (RA) are focused mainly on in vitro culture conditions. To elucidate further the pathogenesis of RA in vivo, bacterial RNA was extracted from overnight tryptic soy broth cultures (in vitro) and from the blood of infected ducks (in vivo) for comparative RNA sequencing analysis. In total, 682 upregulated genes were identified in vivo. Among the upregulated genes, a signal transduction response regulator (ArsR) and a signal transduction histidine kinase (SthK) were predicted to be located on the same operon. A mutant was constructed by deletion of both of these genes. Duck infection tests showed that genes ArsR and SthK were related to the virulence of the pathogen in vivo. Differentially expressed genes identified by comparison of in vitro and in vivo conditions provided an insight into the physiological process of RA infection and provided an opportunity to identify additional virulence factors.
Ducks
;
Genes, vif
;
Histidine
;
In Vitro Techniques
;
Operon
;
Phosphotransferases
;
Physiological Processes
;
Riemerella
;
RNA, Bacterial
;
Sequence Analysis, RNA
;
Signal Transduction
;
Virulence Factors
;
Virulence
9.Comparison of gut microbiotal compositional analysis of patients with irritable bowel syndrome through different bioinformatics pipelines.
Shi Wei ZHU ; Zuo Jing LIU ; Mo LI ; Huai Qiu ZHU ; Li Ping DUAN
Journal of Peking University(Health Sciences) 2018;50(2):231-238
OBJECTIVE:
To assess whether the same biological conclusion, diagnostic or curative effects regarding microbial composition of irritable bowel syndrome (IBS) patients could be reached through different bioinformatics pipelines, we used two common bioinformatics pipelines (Uparse V2.0 and Mothur V1.39.5)to analyze the same fecal microbial 16S rRNA high-throughput sequencing data.
METHODS:
The two pipelines were used to analyze the diversity and richness of fecal microbial 16S rRNA high-throughput sequencing data of 27 samples, including 9 healthy controls (HC group), 9 diarrhea IBS patients before (IBS group) and after Rifaximin treatment (IBS-treatment, IBSt group). Analyses such as microbial diversity, principal co-ordinates analysis (PCoA), nonmetric multidimensional scaling (NMDS) and linear discriminant analysis effect size (LEfSe) were used to find out the microbial differences among HC group vs. IBS group and IBS group vs. IBSt group.
RESULTS:
(1) Microbial composition comparison of the 27 samples in the two pipelines showed significant variations at both family and genera levels while no significant variations at phylum level; (2) There was no significant difference in the comparison of HC vs. IBS or IBS vs. IBSt (Uparse: HC vs. IBS, F=0.98, P=0.445; IBS vs. IBSt, F=0.47,P=0.926; Mothur: HC vs.IBS, F=0.82, P=0.646; IBS vs. IBSt, F=0.37, P=0.961). The Shannon index was significantly decreased in IBSt; (3) Both workshops distinguished the significantly enriched genera between HC and IBS groups. For example, Nitrosomonas and Paraprevotella increased while Pseudoalteromonadaceae and Anaerotruncus decreased in HC group through Uparse pipeline, nevertheless Roseburia 62 increased while Butyricicoccus and Moraxellaceae decreased in HC group through Mothur pipeline.Only Uparse pipeline could pick out significant genera between IBS and IBSt, such as Pseudobutyricibrio, Clostridiaceae 1 and Clostridiumsensustricto 1.
CONCLUSION
There were taxonomic and phylogenetic diversity differences between the two pipelines, Mothur can get more taxonomic details because the count number of each taxonomic level is higher. Both pipelines could distinguish the significantly enriched genera between HC and IBS groups, but Uparse was more capable to identity the difference between IBS and IBSt groups. To increase the reproducibility and reliability and to retain the consistency among similar studies, it is very important to consider the impact on different pipelines.
Case-Control Studies
;
Computational Biology
;
DNA, Bacterial/analysis*
;
Diarrhea
;
Feces
;
Gastrointestinal Microbiome/genetics*
;
Humans
;
Irritable Bowel Syndrome/microbiology*
;
Phylogeny
;
RNA, Ribosomal, 16S
;
Reproducibility of Results
;
Rifamycins
;
Rifaximin
10.The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients.
Hyun Jung KIM ; You Sun KIM ; Kang Hyun KIM ; Jun Pyo CHOI ; Yoon Keun KIM ; Sunmi YUN ; Lokesh SHARMA ; Charles S DELA CRUZ ; Jae Seung LEE ; Yeon Mok OH ; Sang Do LEE ; Sei Won LEE
Experimental & Molecular Medicine 2017;49(4):e316-
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, and bacterial infection plays a role in its pathogenesis. Bacteria secrete nanometer-sized extracellular vesicles (EVs), which may induce more immune dysfunction and inflammation than the bacteria themselves. We hypothesized that the microbiome of lung EVs might have distinct characteristics depending on the presence of COPD and smoking status. We analyzed and compared the microbiomes of 13 nonsmokers with normal spirometry, 13 smokers with normal spirometry (healthy smokers) and 13 patients with COPD by using 16S ribosomal RNA gene sequencing of surgical lung tissue and lung EVs. Subjects were matched for age and sex in all groups and for smoking levels in the COPD and healthy smoker groups. Each group included 12 men and 1 woman with the same mean age of 65.5 years. In all groups, EVs consistently showed more operational taxonomic units (OTUs) than lung tissue. In the healthy smoker and COPD groups, EVs had a higher Shannon index and a lower Simpson index than lung tissue and this trend was more prominent in the COPD group. Principal component analysis (PCA) showed clusters based on sample type rather than participants' clinical characteristics. Stenotrophomonas, Propionibacterium and Alicyclobacillus were the most commonly found genera. Firmicutes were highly present in the EVs of the COPD group compared with other samples or groups. Our analysis of the lung microbiome revealed that the bacterial communities present in the EVs and in the COPD group possessed distinct characteristics with differences in the OTUs, diversity indexes and PCA clustering.
Alicyclobacillus
;
Bacteria
;
Bacterial Infections
;
Extracellular Vesicles*
;
Female
;
Firmicutes
;
Humans
;
Inflammation
;
Lung*
;
Male
;
Microbiota*
;
Passive Cutaneous Anaphylaxis
;
Principal Component Analysis
;
Propionibacterium
;
Pulmonary Disease, Chronic Obstructive*
;
RNA, Ribosomal, 16S
;
Smoke
;
Smoking
;
Spirometry
;
Stenotrophomonas

Result Analysis
Print
Save
E-mail