1.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
2.Salidroside inhibits osteoclast differentiation based on osteoblast-osteoclast interaction via HIF-1a pathway.
Yutong JIN ; Yao WANG ; Chuan WANG ; Lingling ZHANG ; Dandan GAO ; Haizhao LIU ; Qingwen CAO ; Chenchen TIAN ; Yuhong BIAN ; Yue WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):572-584
This study investigated the regulatory potential of salidroside (SAL), a primary active compound in Rhodiola rosea L., on osteoclast differentiation by modulating the hypoxia-inducible factor 1-alpha (HIF-1a) pathway in osteoblasts. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to validate whether the receptor activator of nuclear factor-?B ligand (RANKL) is the downstream target gene of HIF-1a in osteoblasts. The study also utilized lipopolysaccharide (LPS)-induced mouse osteolysis to examine the impact of SAL on osteolysis in vivo. Furthermore, conditioned medium (CM) from SAL-pretreated osteoblasts was used to investigate the paracrine effects on osteoclastogenesis through the HIF-1a pathway. Hypoxic condition-induced overexpression of HIF-1a upregulated RANKL levels by binding to the RANKL promoter and enhancing transcription in osteoblastic cells. In vivo, SAL significantly alleviated bone tissue hypoxia and decreased the expression of HIF-1a by downregulating the expression of RANKL, vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), and angiopoietin-like 4 (ANGPTL4). In the paracrine experiment, conditioned media from SAL-pretreated osteoblasts inhibited differentiation through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. RANKL emerges as the downstream target gene regulated by HIF-1a in osteoblasts. SAL significantly alleviates bone tissue hypoxia and bone loss in LPS-induced osteolysis through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. SAL inhibits osteoclast differentiation by regulating osteoblast paracrine secretion.
Animals
;
Osteoblasts/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Glucosides/administration & dosage*
;
Cell Differentiation/drug effects*
;
Phenols/administration & dosage*
;
Mice
;
Osteoclasts/metabolism*
;
RANK Ligand/genetics*
;
Rhodiola/chemistry*
;
Osteogenesis/drug effects*
;
Signal Transduction/drug effects*
;
Interleukin-6/genetics*
;
Male
;
RAW 264.7 Cells
;
Osteolysis/genetics*
;
Humans
;
Mice, Inbred C57BL
3.Azaphilone derivatives with RANKL-induced osteoclastogenesis inhibition from the mangrove endophytic fungus Diaporthe sp.
Miaoping LIN ; Yanhui TAN ; Humu LU ; Yuyao FENG ; Min LI ; Chenghai GAO ; Yonghong LIU ; Xiaowei LUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1143-1152
This study identified six novel azaphilones, isochromophilones G-L (1-6), and three novel biosynthetically related congeners (7-9) from Diaporthe sp. SCSIO 41011. The structures and absolute configurations were elucidated through comprehensive spectroscopic analyses combined with experimental and calculated electronic circular dichroism (ECD) spectra. Significantly, three highly oxygenated azaphilones contain an acetyl group at the terminal chain (4) or linear conjugated polyenoid moieties (5 and 6), which occur infrequently in the azaphilone family. Additionally, several compounds demonstrated inhibition of lipopolysaccharide (LPS)-induced nuclear factor kappa-B (NF-κB) activation in RAW 264.7 macrophages at 20 μmol·L-1. The novel compound (1) effectively inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation without exhibiting cytotoxicity in bone marrow and RAW 264.7 macrophages, indicating its potential as a promising lead compound for osteolytic disease treatment. This research presents the first documented evidence of azaphilone derivatives as inhibitors of RANKL-induced osteoclastogenesis.
Animals
;
Mice
;
RANK Ligand/genetics*
;
RAW 264.7 Cells
;
Osteoclasts/metabolism*
;
Benzopyrans/isolation & purification*
;
Osteogenesis/drug effects*
;
Macrophages/metabolism*
;
Molecular Structure
;
Pigments, Biological/isolation & purification*
;
Ascomycota/chemistry*
;
NF-kappa B/genetics*
;
Cell Differentiation/drug effects*
4.Effects of low-level laser on the expression of interleukin-6, tumor necrosis factor‑α, osteoprotegerin, and receptor activator of nuclear factor-κB ligand in human periodontal ligament cells.
Meng TANG ; Zhan-Qin CUI ; Yangyang WANG ; Zengguo CHEN ; Wenjing LI ; Cuiping ZHANG
West China Journal of Stomatology 2023;41(5):521-532
OBJECTIVES:
This study aims to determine the effects of low-level laser (LLL) on the expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) in human periodontal ligament cells (HPDLCs) stimulated by high glucose; and identify the molecular mechanism of LLL therapy in the regulation of periodontal inflammation and bone remodeling during orthodontic treatment in diabetic patients.
METHODS:
HPDLCs were cultured in vitro to simulate orthodontic after loading and irradiated with LLL therapy. The cultured cells were randomly divided into four groups: low glucose Dulbecco's modification of Eagle's medium (DMEM)+stress stimulation (group A), high glucose DMEM+stress stimulation (group B), hypoglycemic DMEM+LLL therapy+stress stimulation (group C), and hyperglycemic DMEM+LLL therapy+stress stimulation (group D). Groups C and D were further divided into C1 and D1 (energy density: 3.75 J/cm2) and C2 and D2 (energy density: 5.625 J/cm2). Cells in groups A, B, C, and D were irradiated by LLL before irradiation. At 0, 12, 24, 48, and 72 h, the supernatants of the cell cultures were extracted at regular intervals, and the protein expression levels of IL-6, TNF-α, OPG, and RANKL were detected by enzyme-linked immunosorbent assay.
RESULTS:
1) The levels of IL-6 and TNF-α secreted by HPDLCs increased gradually with time under static pressure stimulation. After 12 h, the levels of IL-6 and TNF-α secreted by HPDLCs in group A were significantly higher than those in groups B, C1, and C2 (P<0.05), which in group B were significantly higher than those in groups D1, and D2 (P<0.01). 2) The OPG protein concentration showed an upward trend before 24 h and a downward trend thereafter. The RANKL protein concentration increased, whereas the OPG/RANKL ratio decreased with time. Significant differen-ces in OPG, RANKL, and OPG/RANKL ratio were found among group A and groups B, C1, C2 as well as group B and groups D1, D2 (P<0.05).
CONCLUSIONS
1) In the high glucose+stress stimulation environment, the concentrations of IL-6 and TNF-α secreted by HPDLCs increased with time, the expression of OPG decreased, the expression of RANKL increased, and the ratio of OPG/RANKL decreased. As such, high glucose environment can promote bone resorption. After LLL therapy, the levels of IL-6 and TNF-α decreased, indicating that LLL therapy could antagonize the increase in the levels of inflammatory factors induced by high glucose environment and upregulate the expression of OPG in human HPDLCs, downregulation of RANKL expression in HPDLCs resulted in the upregulation of the ratio of OPG/RANKL and reversed the imbalance of bone metabolism induced by high glucose levels. 2) The decrease in inflammatory factors and the regulation of bone metabolism in HPDLCs were enhanced with increasing laser energy density within 3.75-5.625 J/cm2. Hence, the ability of LLL therapy to modulate bone remodeling increases with increasing dose.
Humans
;
Osteoprotegerin
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/pharmacology*
;
RANK Ligand/pharmacology*
;
Periodontal Ligament/metabolism*
;
Lasers
;
Glucose/pharmacology*
5.Regulatory function and mechanism of autophagy on osteoclast.
Jian-Sen MIAO ; Xiang-Yang WANG ; Hai-Ming JIN
China Journal of Orthopaedics and Traumatology 2023;36(4):357-363
Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.
Humans
;
Osteoclasts
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
NF-kappa B/metabolism*
;
Autophagy
;
Osteoporosis
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
RANK Ligand/metabolism*
6.Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption.
Fanyuan YU ; Fengli HUO ; Feifei LI ; Yanqin ZUO ; Chenglin WANG ; Ling YE
International Journal of Oral Science 2022;14(1):6-6
Inflammation-associated proteinase functions are key determinants of inflammatory stromal tissues deconstruction. As a specialized inflammatory pathological process, dental internal resorption (IR) includes both soft and hard tissues deconstruction within the dentin-pulp complex, which has been one of the main reasons for inflammatory tooth loss. Mechanisms of inflammatory matrix degradation and tissue resorption in IR are largely unclear. In this study, we used a combination of Cre-loxP reporter, flow cytometry, cell transplantation, and enzyme activities assay to mechanistically investigate the role of regenerative cells, odontoblasts (ODs), in inflammatory mineral resorption and matrices degradation. We report that inflamed ODs have strong capabilities of matrix degradation and tissue resorption. Traditionally, ODs are regarded as hard-tissue regenerative cells; however, our data unexpectedly present ODs as a crucial population that participates in IR-associated tissue deconstruction. Specifically, we uncovered that nuclear factor-kappa b (NF-κB) signaling orchestrated Tumor necrosis factor α (TNF-α)-induced matrix metalloproteinases (Mmps) and Cathepsin K (Ctsk) functions in ODs to enhance matrix degradation and tissue resorption. Furthermore, TNF-α increases Rankl/Opg ratio in ODs via NF-κB signaling by impairing Opg expression but increasing Rankl level, which utterly makes ODs cell line 17IIA11 (A11) become Trap+ and Ctsk+ multinucleated cells to perform resorptive actions. Blocking of NF-κB signaling significantly rescues matrix degradation and resorptive functions of inflamed ODs via repressing vital inflammatory proteinases Mmps and Ctsk. Utterly, via utilizing NF-κB specific small molecule inhibitors we satisfactorily attenuated inflammatory ODs-associated human dental IR in vivo. Our data reveal the underlying mechanisms of inflammatory matrix degradation and resorption via proteinase activities in IR-related pathological conditions.
Humans
;
Matrix Metalloproteinases/metabolism*
;
Minerals/metabolism*
;
NF-kappa B/metabolism*
;
Odontoblasts/metabolism*
;
Osteoclasts/metabolism*
;
RANK Ligand/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Aging effect of osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in human periodontal ligament cells under continuous static pressure.
Jie WU ; Zhanqin CUI ; Yu HAN ; Wenjing LI
West China Journal of Stomatology 2022;40(6):654-661
OBJECTIVES:
The expression of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) in human periodontal ligament cells (HPDLCs) was investigated by cell culture under continuous static pressure.
METHODS:
HPDLCs were primarily cultured by tissue explant method and divided into three groups: group A (13-18 years old), group B (19-29 years old), and group C (30-44 years old). CCK-8 was used to detect the proliferation of HPDLCs. The senescence of HPDLCs was detected by senescence-associated β-galactosidase staining. Cells in the three groups were respectively given 0, 1.5, 3, 6, 12, 24, 48, and 72 h of continuous static pressure in vitro. The expression of OPG and RANKL in the supernatant was detected by enzyme-linked immunosorbent assay.
RESULTS:
After continuous static pressure in vitro for stimulation, the expression of OPG and RANKL changed. The expression of OPG increased with time and age (P<0.01). The expression of RANKL increased with time and decreased with age (P<0.01). The ratio of OPG/RANKL initially decreased, increased with time, and then continued to rise with age (P<0.01).
CONCLUSIONS
Aging could increase the expression of OPG and the ratio of OPG/RANKL and decrease the expression of RANKL in HPDLCs under continuous static pressure in vitro.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Osteoprotegerin
;
RANK Ligand/pharmacology*
;
Periodontal Ligament/metabolism*
;
Cells, Cultured
;
Aging
8.Receptor Activator of Nuclear Factor κB Ligand-Receptor Activator of Nuclear Factor κB Signaling Pathway in Myeloma Bone Disease.
Yan FENG ; Wen-Jiao TANG ; Zhong-Qing ZOU ; Jian CUI ; Li ZHANG ; Ting NIU
Acta Academiae Medicinae Sinicae 2022;44(4):686-692
Multiple myeloma is an incurable malignant disease characterized by proliferation of clonal plasma cells in the bone marrow.About 90% of the patients with multiple myeloma develop myeloma bone disease(MBD),which seriously affects the quality of life and prognosis of the patients.Traditional therapies for MBD include bisphosphonates,radiotherapy,and surgery.The recent studies have confirmed that the receptor activator of nuclear factor κB ligand (RANKL)-receptor activator of nuclear factor κB(RANK) signaling pathway plays a key role in MBD,providing a new therapeutic target for MBD.This review summarized the role of RANKL-RANK signaling pathway in the pathogenesis of MBD and the advance in the targeted therapy.
Bone Diseases/metabolism*
;
Humans
;
Ligands
;
Multiple Myeloma/metabolism*
;
NF-kappa B/metabolism*
;
Quality of Life
;
RANK Ligand/metabolism*
;
Receptor Activator of Nuclear Factor-kappa B
;
Signal Transduction
9.TRAF6/ERK/p38 pathway is involved in interleukin-17-mediated autophagy to promote osteoclast precursor cell differentiation.
Zhongxiu WANG ; Jiahui ZHONG ; Jingyi TAN ; Yeqi SHEN ; Lili CHEN
Journal of Zhejiang University. Medical sciences 2021;50(2):162-170
To investigate the effects of interleukin (IL)-17-mediated autophagy on the TNF receptor associated factor (TRAF6)/extracellular signal-regulated kinase (ERK)/p38 pathway and osteoclast differentiation. Mouse bone marrow-derived macrophages (BMM) were cultured with a medium containing 30 ng/mL macrophage colony stimulating factor and 50 ng/mL receptor activator of nuclear factor-kappa B ligard (RANKL), and IL-17 (0.01, 0.1, 1.0, 10 ng/mL) was added for intervention (IL-17 group). Tartrate-resistant acid phosphatase (TRAP) staining was used to observe TRAP positive multinucleated cells; phalloidin fluorescent staining was used to detect actin ring circumference; toluidine blue staining was used to analyze bone resorption lacuna formation. To further examine the mechanism of the effect of IL-17-mediated autophagy on the differentiation of osteoclasts, the control group used RANKL medium to culture mouse macrophage RAW264.7 cells, while the IL-17 group was treated with IL-17 (0.01, 0.1, 1.0, /mL). Western blot was used to detect the expression of autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and osteoclast-related proteins c-fos and nuclear factor of activated T cell 1 (NFATc1) after treatment with different concentrations of IL-17. The expression of LC3, NFATc1, TRAF6/ERK/p38 signaling pathway related proteins were detected in IL-17 and autophagy inhibitor 3-MA group. The number of TRAP positive multinucleated cells, the circumference of the actin ring and the area of bone resorption lacuna in IL-17 group treated with IL-17 (0.01, 0.1, were significantly higher than those in the control group. In IL-17 treated RAW264.7 cells, the expression of c-fos, NFATc1, Beclin-1, LC3, TRAF6, p-ERK, and p-p38 was all significantly up-regulated (all 0.05). After treatment with the autophagy inhibitor 3-MA, the expression levels of LC3, NFATc1, TRAF6, p-ERK, and p-p38 all decreased significantly (all 0.05). IL-17 can promote the expression of autophagy proteins and enhance the differentiation ability of osteoclast precursor cells, and the TRAF6/ERK/p38 signaling pathway may be involved in this process.
Animals
;
Autophagy
;
Bone Resorption
;
Cell Differentiation
;
Extracellular Signal-Regulated MAP Kinases
;
Interleukin-17
;
Mice
;
NFATC Transcription Factors/metabolism*
;
Osteoclasts/metabolism*
;
RANK Ligand/metabolism*
;
TNF Receptor-Associated Factor 6
10.Prolonged continuous infusion of teriparatide promotes bone metabolism in normal but not in castrated mice.
Minghan LI ; Youhua HE ; Guojun TONG ; Dehong YANG
Journal of Southern Medical University 2019;39(9):1045-1051
OBJECTIVE:
To investigate the effects of continuous pumping of teriparatide (TPTD) on bone metabolism in ovariectomized and normal mice and provide experimental evidence for the selection of animal models for studying the effects of TPTD and its related peptides on osteoclasts.
METHODS:
Twenty-four female C57BL mice (6-weeks old) were subjected to ovariectomy (OVX) or sham operation followed 7 days later by continuous pumping of TPTD or the solvent vehicle (VEH) a micropump (SHAM-VEH, SHAM-TPTD, OVX-VEH, and OVX-TPTD groups; =6). Two weeks later, the tibial and femoral bones were harvested for micro-CT scanning to measure the parameters of the tibia and the femoral cortical bone. Histopathological examinations of the tibial tissue were conducted using HE staining and TRAP staining and the number of osteoclasts and the growth plate thickness were determined. The serum Ca2 + levels of the mice were measured. The primary osteoblasts from the cranial bone were treated with estradiol (E2) and TPTD for 48 h, and the expressions of β-catenin and RANKL protein in the cells were analyzed.
RESULTS:
The trabecular bone mass of OVX mice was significantly lower than that of sham-operated mice ( < 0.05). Continuous TPTD pumping significantly reduced tibial cancellous bone mass and femoral cortical bone area in the sham-operated mice, while in the castrated mice, TPTD pumping increased the cancellous bone mass without changing the cortical bone area. TRAP staining showed that cancellous osteoblasts in the tibia increased significantly in the castrated mice as compared with the sham-operated mice, and TPTD pumping significantly increased the number of cancellous osteoblasts in the sham-operated mice ( < 0.05). In the primary cultured osteoblasts, treatment with both E2 and TPTD obviously lowered the expression of β-catenin and increased the expression of RANKL as compared with TPTD treatment alone.
CONCLUSIONS
Continuous pumping of TPTD promotes bone resorption in normal mice but does not produce obvious bone resorption effect in the ovariectomized mice, suggesting that castrated mice are not suitable models for studying the effect of TPTD and the related peptides on the osteoclasts.
Animals
;
Bone Density
;
Bone Density Conservation Agents
;
administration & dosage
;
pharmacology
;
Bone Resorption
;
drug therapy
;
Bone and Bones
;
drug effects
;
metabolism
;
Female
;
Growth Plate
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoclasts
;
drug effects
;
Ovariectomy
;
RANK Ligand
;
metabolism
;
Teriparatide
;
administration & dosage
;
pharmacology
;
beta Catenin
;
metabolism

Result Analysis
Print
Save
E-mail