1.The role of Staphylococcus aureus in the occurrence and development of chronic rhinosinusitis with nasal polyps.
Jun NEI ; Yuhuang WU ; Youqin DU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):679-685
Chronic rhinosinusitis with nasal polyps(CRSwNP) represents a prevalent inflammatory disorder, which is often accompanied by nasal congestion, mucopurulent discharge, olfactory dysfunction, dizziness, and headache. Staphylococcus aureus(SA), a predominant opportunistic pathogen within the sinonasal microenvironment, has been implicated in modulating the pathogenesis and progression of CRSwNP through multifaceted mechanisms. The physiological activities of SA-dependent quorum-sensing system and biofilm in the nasal microenvironment, including interactions with host, fungi, viruses, and other bacteria, as well as the effects of important superantigens secreted by SA on the microenvironment and immune barrier, are briefly reviewed in this article. These insights provide theoretical foundations for elucidating CRSwNP mechanisms and advancing clinical therapeutic strategies.
Humans
;
Sinusitis/microbiology*
;
Nasal Polyps/microbiology*
;
Staphylococcus aureus
;
Chronic Disease
;
Rhinitis/microbiology*
;
Staphylococcal Infections/microbiology*
;
Quorum Sensing
;
Biofilms
;
Rhinosinusitis
2.Acyl homoserine lactones facilitate the isolation and cultivation of Gram-negative bacteria from mouse intestine.
Changyu WANG ; Qinghua ZHAO ; Chang LIU ; Shuangjiang LIU
Chinese Journal of Biotechnology 2025;41(6):2349-2359
N-dodecanoyl-l-homoserine lactone (C12-HSL) is a signaling molecule that mediates bacterial quorum sensing, regulating bacterial population behaviors. This study investigated the effects of C12-HSL on the isolation and cultivation of gut microbiota, with the goal of enriching the diversity and number of cultivable bacterial strains from the mouse gut microbiota. Using a culture medium supplemented with C12-HSL, we isolated and cultivated bacterial strains from mouse intestinal contents, obtaining a total of 235 isolates. Preliminary identification based on the 16S rRNA gene revealed 54 bacterial species, including 4 potential new species, 4 potential new genera and 1 potential new family. Compared with the previously established mouse gut microbial biobank (mGMB), this study newly identified 42 bacterial species, enhancing the diversity of the strain library. Statistical analysis showed that the proportion of Gram-negative bacteria, particularly those belonging to Proteobacteria, isolated by this method was significantly higher than that obtained by conventional isolation and cultivation methods without the addition of C12-HSL. Subsequent cultivation experiments with one of the newly discovered bacterial species indicated that exogenous C12-HSL at 20-200 μmol/L significantly promoted the growth of this species, while higher concentrations of C12-HSL significantly reduced the cell density of this bacterium. This work confirms that quorum sensing molecules, such as C12-HSL, can enhance the growth, isolation, and cultivation of Gram-negative bacteria in the gut within a specific concentration range. Although the mechanism by which C12-HSL promotes the growth of gut bacterial strains requires further investigation, the findings of this study provide new insights into the targeted isolation, cultivation, and regulation of gut microbiota using bacterial quorum sensing signal molecules.
Animals
;
Mice
;
Acyl-Butyrolactones/pharmacology*
;
Gastrointestinal Microbiome/drug effects*
;
Quorum Sensing
;
Gram-Negative Bacteria/classification*
;
Intestines/microbiology*
;
RNA, Ribosomal, 16S/genetics*
;
Culture Media
3.Shewanella biofilm formation regulated by acyl-homoserine lactones and its application in UO22+ electrosorption.
Tingting LIU ; Hong SHU ; Qian LI ; Zhao CUI ; Guangyue LI ; Ting LI ; Yongdong WANG ; Jing SUN
Chinese Journal of Biotechnology 2025;41(8):3081-3097
Shewanella oneidensis MR-1, a Gram-negative bacterium with a significant role in the adsorption and reduction of uranium in wastewater and a quorum-sensing effect, can be used to remove uranium from wastewater. Exogenous signaling molecules (acyl-homoserine lactones, AHLs) can be added to induce the quorum sensing behavior for rapid biofilm formation, thereby improving the removal efficiency of this bacterium for uranium. Extracellular polymeric substances (EPS), as the significant components of biofilm, play a key role in biofilm formation. To investigate the quorum sensing behavior induced by AHLs, we systematically investigated the effects of AHLs on the EPS secretion and biofilm properties of S. oneidensis MR-1 by regulating parameters such as AHL species, concentration, addition time point, and contact time. The results showed that the addition of 10 μmol/L N-butyryl-l-homoserine lactone (C4-HSL) after 6 h of culture and continued incubation to reach the time point of 72 h significantly promoted the secretion of EPSs, in which the content of extracellular proteins and extracellular polysaccharides was increased by 15.2% and 28.2%, respectively, compared with that of the control group. The biofilm electrodes induced by signaling molecules showed superior properties, which were evidenced by an increase of exceeding 20 μm in biofilm thickness, an increase of 33.9% in the proportion of living cells, enhanced electroactivity, and an increase of 10.7% in the uranium removal rate. The biofilm electrode was confirmed to immobilize uranium in wastewater mainly by electrosorption, physicochemical adsorption, and electro-reduction through characterization means such as X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This study provides a new technical idea for the efficient recovery of uranium in wastewater and enriches the theoretical system of quorum sensing regulation of electroactive biofilms.
Biofilms/drug effects*
;
Acyl-Butyrolactones/pharmacology*
;
Quorum Sensing/drug effects*
;
Uranium/metabolism*
;
Shewanella/metabolism*
;
Adsorption
;
Uranium Compounds/metabolism*
;
Wastewater/chemistry*
;
Biodegradation, Environmental
;
Extracellular Polymeric Substance Matrix/metabolism*
4.Protein Containing the GGDEF Domain Affects Motility and Biofilm Formation in Vibrio cholerae and is Negatively Regulated by Fur and HapR.
He GAO ; Li Zhi MA ; Qin QIN ; Yao CUI ; Xiao Han MA ; Yi Quan ZHANG ; Biao KAN
Biomedical and Environmental Sciences 2023;36(10):949-958
OBJECTIVE:
This study aimed to investigate whether the VCA0560 gene acts as an active diguanylate cyclase (DGC) in Vibrio cholerae and how its transcription is regulated by Fur and HapR.
METHODS:
The roles of VCA0560 was investigated by utilizing various phenotypic assays, including colony morphological characterization, crystal violet staining, Cyclic di-GMP (c-di-GMP) quantification, and swimming motility assay. The regulation of the VCA0560 gene by Fur and HapR was analyzed by luminescence assay, electrophoretic mobility shift assay, and DNase I footprinting.
RESULTS:
VCA0560 gene mutation did not affect biofilm formation, motility, and c-di-GMP synthesis in V. cholerae, and its overexpression remarkably enhanced biofilm formation and intracellular c-di-GMP level but reduced motility capacity. The transcription of the VCA0560 gene was directly repressed by Fur and the master quorum sensing regulator HapR.
CONCLUSION
Overexpressed VCA0560 functions as an active DGC in V. cholerae, and its transcription is repressed by Fur and HapR.
Vibrio cholerae/genetics*
;
Biofilms
;
Quorum Sensing
;
Mutation
;
Gene Expression Regulation, Bacterial
;
Bacterial Proteins/genetics*
5.Evaluation of anti-quorum sensing potential of Averrhoa bilimbi (Kamias) against Pseudomonas aeruginosa ATCC 27853.
Mark Gabriel M. Delos Santos ; Joanna J. Orejola
Philippine Journal of Health Research and Development 2023;27(1):45-53
BACKGROUND AND OBJECTIVE:
Many opportunistic and nosocomial pathogens like Pseudomonas aeruginosa are
very reliant on a bacterium-to-bacterium communication system called quorum sensing (QS). Without the
aforementioned process, gene expressions associated with virulence factors will not be produced. In this study,
the sub-inhibitory concentrations (sub-MICs) of methanolic leaf extract and obtained fractions from Averrhoa
bilimbi (kamias) were screened for ability to inhibit quorum sensing-controlled phenotypes of P. aeruginosa
ATCC 27853.
METHODOLOGY:
A. bilimbi crude extract was fractionated through liquid-liquid extraction, producing four (4)
fractions: hexane fraction, dichloromethane (DCM) fraction, ethyl acetate (EtOAc) fraction, and water (H2O)
fraction. Among the sub-MICs obtained from resazurin-based fluorimetric microtiter assay, only 50 μg/mL was
utilized in evaluating the anti-QS properties of crude extract and fr
RESULTS:
In the swarming motility assay, hexane fraction (9.39 mm ± 0.67) and DCM fraction (10.82 mm ± 0.95)
displayed restriction in the treated P. aeruginosa ATCC 27853 swarms against the control (16.20 mm ± 2.55). In
the anti-pyocyanin production assay, hexane fraction exhibited an inhibition of 42.66 % ± 12.94. TLC analysis
and phytochemical screening revealed that hexane fraction contains steroids, terpenes, triterpenes, and
glycolipids; and DCM fraction contains cardiac glycosides, triterpenoids, terpenes, triterpenes, steroids,
alkaloids, and glycolipids.
CONCLUSION
Hexane and DCM fractions obtained from A. bilimbi significantly inhibited swarming of P.
aeruginosa ATCC 27853 while none of the extracts were able to significantly inhibit pyocyanin formation of P.
aeruginosa ATCC 27853.
Pseudomonas aeruginosa
;
Averrhoa bilimbi
;
quorum sensing
;
pyocyanin
6.Master Quorum Sensing Regulator HapR Acts as A Repressor of the Mannitol Phosphotransferase System Operon in Vibrio cholerae.
Yi Quan ZHANG ; Li Zhi MA ; Yue GAO ; Qin QIN ; Jie LI ; Jing LOU ; Miao Miao ZHANG ; Xing Fan XUE ; Biao KAN ; He GAO
Biomedical and Environmental Sciences 2022;35(1):69-72
7.Using plant extracts and their active ingredients to inhibit bacterial biofilms.
Peng CHENG ; Jing XIONG ; Hui LI ; Shiyuan WANG ; Yang ZHANG ; Cui MEI ; Xueqing WU ; Yuzhang HE ; Hongwei CHEN
Chinese Journal of Biotechnology 2022;38(5):1753-1767
Numerous studies have reported that the resistance of biofilm bacteria to antibiotics can be up to 10-1 000 fold higher than that of planktonic bacteria. Bacterial biofilms are reported to be responsible for more than 80% of human microbial infection, posing great challenges to the healthcare sector. Many studies have reported that plant extracts and their active ingredients can inhibit the formation and development of bacterial biofilms, including reducing biofilm biomass and the number of viable bacteria in biofilms, as well as eradicating mature biofilms. This review summarized the plant extracts and their active ingredients that are inhibitory to bacterial biofilms, and analyzed the underpinning mechanisms. This review may serve as a reference for the development of plant drugs to prevent and treat biofilm infections.
Anti-Bacterial Agents/pharmacology*
;
Bacteria
;
Biofilms
;
Humans
;
Plant Extracts/pharmacology*
;
Quorum Sensing
8.In vitro quorum quenching activity of eleusine indica crude ethanolic extract against pseudomonas aeruginosa and serratia marcescens.
Allan John R. Barcena ; Eunice Maricar M. Baldovino ; Justin Grace Bañ ; ez ; Czarina Ann B. Baptisma ; Aldwin Matthew M. Barondax ; Renren B. Barroga ; Jumela Mica Q. Bautista ; Gabriel Roberto G. Baybay ; Rafael Mariano G. Baybay ; Vibiene Norma C. Bernal ; Katherine Adrielle R. Bersola ; Katrina Ysabelle T. Bolañ ; os ; Hans Joren L. Bondoc ; Julius Ervin S. Buitizon ; Alec Xavier D. Bukuhan ; John Patrick B. Bulaong ; Jan Louise DC. Cabrera ; Nikko H. Cabrestante ; Gian Carlo M. Cabuco ; Jose Paciano B.T. Reyes ; Fresthel Monica M. Climacosa
Acta Medica Philippina 2022;56(5):34-40
Introduction: Nosocomial contaminants such as Pseudomonas aeruginosa and Serratia marcescens are increasingly developing resistance to many antibiotics. One of the promising alternatives that may complement, if not substitute, the use of antibiotics is quorum quenching, the process of interfering with chemical signals that mediate communication between microorganisms. Eleusine indica, a ubiquitous grass used traditionally to treat infections, has been shown to contain metabolites, such as fatty acid derivatives and p-coumaric acid, capable of quorum quenching. To date, there has been no study on the quorum quenching activity of E. indica.
Objectives: This study aimed to determine the in vitro activity of crude ethanolic extract of E. indica leaves against selected quorum-sensing regulated virulence factors of P. aeruginosa and S. marcescens.
Methodology: E. indica leaves were collected, washed, air-dried, and homogenized. Following ethanolic extraction and rotary evaporation, the extract was screened for antimicrobial activity through disk diffusion test and broth microdilution assay. The quorum quenching activity of the extract against P. aeruginosa was measured through swarming motility assay, while the activity against S. marcescens was measured through swarming motility and pigment inhibition assays. The quorum quenching assays were conducted in triplicates, and analysis of variance (ANOVA) was performed to identify differences among the treatment groups.
Results: Disk diffusion test revealed that no zones of inhibition formed against both P. aeruginosa and S. marcescens for varying concentrations of up to 200 mg/mL of the crude extract. Likewise, the MIC of the extract against both P. aeruginosa and S. marcescens was determined to be >200 mg/mL. However, it was shown that the extract, at 50 mg/mL, has statistically significant activity (p<0.05) against the swarming motility of P. aeruginosa, and it is 71.6% as effective in reducing the swarming area of the bacteria compared to cinnamaldehyde. This was not observed when the extract was tested against the swarming motility of and pigment production by S. marcescens.
Conclusion: In this study, the quorum quenching activity of the crude ethanolic extract of E. indica leaves was found to be effective against P. aeruginosa but not against S. marcescens. The compounds that will be identified by further studies may conceivably be used as an adjunct therapy in P. aeruginosa infections and as coating agents in medical devices.
Eleusine ; Pseudomonas aeruginosa ; Quorum Sensing ; Serratia marcescens ; Prodigiosin
9.Perifosine inhibits biofilm formation of Pseudomonas aeruginosa by interacting with PqsE protein.
Peng Fei SHE ; Lan Lan XU ; Ya Qian LIU ; Ze Hao LI ; Sha Sha LIU ; Yi Min LI ; Lin Ying ZHOU ; Yong WU
Chinese Journal of Preventive Medicine 2022;56(2):192-196
To explore the biofilm inhibitory efficacy of perifosine against Pseudomonas aeruginosa (P. aeruginos) and its mechanisms. Twenty-fourwell plate was used to form biofilms at the bottom and crystal violet staining was used to determine the biofilm inhibitory effects of perifosine against P. aeruginosa, the wells without perifosine was set as control group. Glass tubes combined with crystal violet staining was used to detect the gas-liqud interface related bioiflm inhibitory effects of perifosine, the wells without perifosine was set as control group. Time-growth curved was used to detect the effects of perifosine on the bacteial planktonic cells growth of P. aeruginosa, the wells without perifosine was set as control group. The interaction model between perifosine and PqsE was assessed by molecular docking assay. The inhibitory effects of perifosine on the catalytic activity of PqsE was determined by detection the production of thiols, the wells without perifosine was set as control group. Binding affinity between perifosine and PqsE was detected by plasma surface resonance. The biofims at the bottom of the microplates and air-liquid interface were effectively inhibited by perifosine at the concentration of 4-8 μg/ml. There was no influence of perifosine on the cells growth of P. aeruginosa. The resuts of molecular docking assay indicates that perifosine could interacted with PqsE with the docking score of -10.67 kcal/mol. Perifosine could inhibit the catalytic activity of PqsE in a dose-dependent manner. The binding affinity between perifosine and PqsE was comfirmed by plasma surface resonance with KD of 6.65×10-5mol/L. Perifosine could inhibited the biofilm formation of P. aeruginosa by interacting with PqsE.
Anti-Bacterial Agents/pharmacology*
;
Bacterial Proteins/metabolism*
;
Biofilms
;
Molecular Docking Simulation
;
Phosphorylcholine/analogs & derivatives*
;
Pseudomonas aeruginosa/metabolism*
;
Quorum Sensing
10.Ligands of TetR family transcriptional regulators: a review.
Panpan WU ; Bowen LI ; Ketao CHEN ; Hang WU ; Buchang ZHANG
Chinese Journal of Biotechnology 2021;37(7):2379-2392
TetR family transcriptional regulators (TFRs) are widely distributed in bacteria and archaea, and the first discovered TFR was confirmed to control the expression of tetracycline efflux pump in Escherichia coli. TFRs can bind DNAs and ligands. Small molecule ligands can induce conformational changes of TFRs, inhibiting or promoting TFRs to control target gene expression. Currently, TFRs have a wide variety of ligands, including carbohydrates, proteins, fatty acids and their derivatives, metal ions, and so on. Due to the diversity of ligands, TFRs regulate a wide range of physiological processes, from basic carbon metabolism and nitrogen metabolism to quorum sensing and antibiotic biosynthesis. On the basis of the recent studies in our laboratory and the literature, we review here the regulatory mechanism mediated by ligands of TFRs in primary and secondary metabolism, as well as the application of ligands for TFRs in the development of gene route and the activation of antibiotic biosynthesis.
Anti-Bacterial Agents
;
Bacteria/metabolism*
;
Bacterial Proteins/metabolism*
;
Gene Expression Regulation, Bacterial
;
Ligands
;
Quorum Sensing


Result Analysis
Print
Save
E-mail