1.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
2.The systemic inflammatory response index as a risk factor for all-cause and cardiovascular mortality among individuals with coronary artery disease: evidence from the cohort study of NHANES 1999-2018.
Dao-Shen LIU ; Dan LIU ; Hai-Xu SONG ; Jing LI ; Miao-Han QIU ; Chao-Qun MA ; Xue-Fei MU ; Shang-Xun ZHOU ; Yi-Xuan DUAN ; Yu-Ying LI ; Yi LI ; Ya-Ling HAN
Journal of Geriatric Cardiology 2025;22(7):668-677
BACKGROUND:
The association of systemic inflammatory response index (SIRI) with prognosis of coronary artery disease (CAD) patients has never been investigated in a large sample with long-term follow-up. This study aimed to explore the association of SIRI with all-cause and cause-specific mortality in a nationally representative sample of CAD patients from United States.
METHODS:
A total of 3386 participants with CAD from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were included in this study. Cox proportional hazards model, restricted cubic spline (RCS), and receiver operating characteristic curve (ROC) were performed to investigate the association of SIRI with all-cause and cause-specific mortality. Piece-wise linear regression and sensitivity analyses were also performed.
RESULTS:
During a median follow-up of 7.7 years, 1454 all-cause mortality occurred. After adjusting for confounding factors, higher lnSIRI was significantly associated with higher risk of all-cause (HR = 1.16, 95% CI: 1.09-1.23) and CVD mortality (HR = 1.17, 95% CI: 1.05-1.30) but not cancer mortality (HR = 1.17, 95% CI: 0.99-1.38). The associations of SIRI with all-cause and CVD mortality were detected as J-shaped with threshold values of 1.05935 and 1.122946 for SIRI, respectively. ROC curves showed that lnSIRI had robust predictive effect both in short and long terms.
CONCLUSIONS
SIRI was independently associated with all-cause and CVD mortality, and the dose-response relationship was J-shaped. SIRI might serve as a valid predictor for all-cause and CVD mortality both in the short and long terms.
3.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
4.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
7.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
10.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.

Result Analysis
Print
Save
E-mail