1.Application of partial least squares algorithm to explore bioactive components of crude and stir-baked hawthorn for invigorating spleen and promoting digestion.
Fei SUN ; Xiang-Qin WU ; Yue QI ; Xing-Yu CHEN ; Yu-Hua CAO ; Jian-Gang WANG ; Shu-Mei WANG ; Sheng-Wang LIANG
China Journal of Chinese Materia Medica 2023;48(4):958-965
This study was aimed at identifying the bioactive components of the crude and stir-baked hawthorn for invigorating spleen and promoting digestion, respectively, to clarify the processing mechanism of hawthorn by applying the partial least squares(PLS) algorithm to build the spectrum-effect relationship model. Firstly, different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions were prepared, respectively. Then, the contents of 24 chemical components were determined by ultra-high performance liquid chromatography-mass spectrometry. The effects of different polar fractions of crude hawthorn and stir-baked hawthorn aqueous extracts and combinations of different fractions were evaluated by measuring the gastric emptying rate and small intestinal propulsion rate. Finally, the PLS algorithm was used to establish the spectrum-effect relationship model. The results showed that there were significant differences in the contents of 24 chemical components for different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions, and the gastric emptying rate and small intestinal propulsion rate of model rats were improved by administration of different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions. The bioactive components of crude hawthorn identified by PLS models were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, neochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, malic acid, quinic acid and fumaric acid, while neochlorogenic acid, cryptochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, quinic acid and fumaric acid were the bioactive components of stir-baked hawthorn. This study provided data support and scientific basis for identifying the bioactive components of crude and stir-baked hawthorn, and clarifying the processing mechanism of hawthorn.
Animals
;
Rats
;
Spleen
;
Crataegus
;
Quinic Acid
;
Least-Squares Analysis
;
Vanillic Acid
;
Algorithms
;
Digestion
2.Potential pharmacodynamic substances of Laportea bulbifera in treatment of rheumatoid arthritis based on serum pharmacochemistry and pharmacology.
Juan TANG ; Qing ZHANG ; Dan WU ; Si-Ying CHEN ; Yi CHEN ; Yue-Ting LI ; Lin ZHENG ; Yong HUANG ; Yan-Yu LAN ; Yong-Lin WANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2022;47(17):4755-4764
The present study investigated the pharmacodynamic material basis of Laportea bulbifera in the treatment of rheumatoid arthritis. Firstly, human rheumatoid arthritis fibroblast-like synoviocyte line MH7A was cultured in vitro and treated with tumor necrosis factor alpha(TNF-α, 50 ng·mL~(-1)). The proliferation and the levels of inflammatory cytokines such as prostaglandin E2(PGE2), interleukin-1β(IL-1β), and interleukin-6(IL-6) of the MH7A cells exposed to the serum containing L. bulbifera were determined to evaluate the anti-rheumatoid arthritis effects of the serum. Furthermore, the ultra-performance liquid chromatography tandem mass spectrometry fingerprints of the L. bulbifera crude extract, the drug-containing serum, and the drug-free serum were compared to identify the compounds newly generated in the serum after oral administration of the extract. According to the peak areas of common peaks and the results of anti-rheumatoid arthritis effect test, the active components were identified. The serum containing L. bulbifera significantly inhibited the proliferation of the MH7A cells activated by TNF-α and the expression of PGE2, IL-6, and IL-1β. Thirty newly generated compounds were detected in the drug-containing serum. Among them, neochlorogenic acid, cryptochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, luteoloside, kaempferol-3-O-rutinoside, and quercitrin were also present in the crude extract. Twelve characteristic peaks(3, 7, 8, 14, 18, 19, 21, 23, 24, m6, m7, and m15) were significantly correlated with the pharmaceutical effect. According to the correlations, neochlorogenic acid, cryptochlorogenic acid, and chlorogenic acid had great contributions to the anti-rheumatoid arthritis activity. This study preliminarily clarified the potential pharmacodynamic substances of L. bulbifera in the treatment of rheumatoid arthritis, which laid a theoretical and experimental foundation for further development and application of the medicinal plant.
Animals
;
Arthritis, Experimental/drug therapy*
;
Arthritis, Rheumatoid/drug therapy*
;
Chlorogenic Acid/analogs & derivatives*
;
Cytokines/metabolism*
;
Dinoprostone
;
Humans
;
Interleukin-1beta/genetics*
;
Interleukin-6
;
Plant Extracts/therapeutic use*
;
Quinic Acid/analogs & derivatives*
;
Rutin
;
Tumor Necrosis Factor-alpha/metabolism*
;
Urticaceae/chemistry*
3.Chemical constituents from Urtica dioica fruits.
Wai LI ; Zi-Wei WU ; Xiao-Bo LI ; Yan CHEN ; Meng-Yue WANG
China Journal of Chinese Materia Medica 2022;47(18):4972-4977
The chemical constituents in Urtica dioica fruits were investigated by silica gel chromatography, preparative HPLC, NMR, and HR-MS for the first time. As a result, 21 compounds were isolated from the fruits of U. dioica and identified 7R,8S,8'R-olivil(1), oleic acid(2), α-linoleic acid(3), palmic acid(4), methyl palmitate(5), α-linolenic acid(6), α-linolenic acid methyl ester(7), 5-O-caffeoyl-shikimic acid(8), vanillic acid(9), p-coumaric acid(10), 5-O-p-coumaroylshikimic acid(11), cinnamic acid(12), quinic acid(13), shikimic acid(14), ethyl caffeate(15), coniferyl ferulate(16), ferulic acid(17), caffeic acid(18), chlorogenic acid(19), pinoresinol(20), and quercetin(21). Compound 1 was a new compound and compounds 2-16 were isolated from U. dioica for the first time.
Chlorogenic Acid
;
Fruit
;
Linoleic Acid
;
Oleic Acid
;
Quercetin/chemistry*
;
Quinic Acid
;
Shikimic Acid
;
Silicon Dioxide
;
Urtica dioica/chemistry*
;
Vanillic Acid
;
alpha-Linolenic Acid
4.Analysis of metabolites of 4,5-dicaffeoylquinic acid in rat plasma and urine based on LC-MS.
Mei-Rong ZHAN ; Yi-Qun JIA ; Long CHEN ; Xia-Lei WANG ; Yu WANG
China Journal of Chinese Materia Medica 2020;45(2):391-397
Ultra high performance liquid chromatography tandem high field orbital trap mass spectrometry(UPLC-Orbitrap Elite-MS/MS) method was applied in this paper to analyze the metabolites of 4,5-dicaffeoylquinic acid in rat plasma and urine after oral administration. A gradient elution was performed by using Thermo C_(18) column(2.1 mm×100 mm, 1.9 μm), with 0.1% formic acid solution-acetonitrile as the mobile phase. Mass spectral data of biological samples were collected in negative ion mode. The data were extracted by Compound Discovery 2.1 software. Then the blank group samples and the drug samples were compared for exact molecular weight and the mass fragmentation information, and the secondary fragment fitting ratio was calculated to finally attribute the metabolites. As a result, 15 metabolites were detected in rat plasma, and 16 metabolites were detected in urine. The involving metabolic reactions included methylation, hydration, dehydration, reduction, glucuronide conjugation, and sulfation reaction. The metabolites in plasma and urine complemented each other and initially revealed the migration and excretion patterns of this compound in the body. A method for pre-processing biological samples, high-resolution LC-MS instrumentation data, and qualitative software was established in this study to identify metabolite structures, laying the foundation for the study of the active ingredients and in vivo pharmacodynamics forms of Chinese medicines.
Animals
;
Chromatography, Liquid
;
Quinic Acid/urine*
;
Rats
;
Tandem Mass Spectrometry
5.Anti-nociceptive and Anti-inflammatory Properties of Ilex latifolia and its Active Component, 3,5-Di-caffeoyl Quinic Acid Methyl Ester
Joo Youn KIM ; Hong Kyu LEE ; Yeon Hee SEONG
Natural Product Sciences 2019;25(1):64-71
The present study was conducted to investigate anti-nociceptive and anti-inflammatory effects of the leaves of Ilex latifolia Thunb (I. latifolia) in in vivo and in vitro. Writhing responses induced by acetic acid and formalin- and thermal stimuli (tail flick and hot plate tests)-induced pain responses for nociception were evaluated in mice. I. latifolia (50 – 200 mg/kg, p.o.) and ibuprofen (100 mg/kg, p.o.), a positive non-steroidal anti-inflammatory drug (NSAID), inhibited the acetic acid-induced writhing response and the second phase response (peripheral inflammatory response) in the formalin test, but did not protect against thermal nociception and the first phase response (central response) in the formalin test. These results show that I. latifolia has a significant anti-nociceptive effect that appears to be peripheral, but not central. Additionally, I. latifolia (50 and 100 µg/mL) and 3,5-di-caffeoyl quinic acid methyl ester (5 µM) isolated from I. latifolia as an active compound significantly inhibited LPS-induced NO production and mRNA expression of the pro-inflammatory mediators, iNOS and COX-2, and the pro-inflammatory cytokines, IL-6 and IL-1β, in RAW 264.7 macrophages. These results suggest that I. latifolia can produce antinociceptive effects peripherally, but not centrally, via anti-inflammatory activity and supports a possible use of I. latifolia to treat pain and inflammation.
Acetic Acid
;
Animals
;
Cyclooxygenase 2
;
Cytokines
;
Ibuprofen
;
Ilex
;
In Vitro Techniques
;
Inflammation
;
Interleukin-6
;
Macrophages
;
Mice
;
Nitric Oxide
;
Nociception
;
Pain Measurement
;
Quinic Acid
;
RNA, Messenger
6.Effect of different sulfur fumigation dosages on activity of browning enzymes and chemical constituents of Chrysanthemum morifolium cv. Boju.
Shan WANG ; You-Lian LI ; Jing-Jing ZHU ; Yao-Hua LIANG ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2019;44(22):4852-4856
This study aims to investigate the influence of the different dosages of sulfur on the quality and the browning enzyme activity of Chrysanthemum morifolium cv. Boju. In this experiment,UV-spectrophotometry was used to determine the activities of browning enzymes,including polyphenol oxidase( PPO) and peroxidase( POD),in 7 different dosages of 0,4,8,16,50,150,200 g·kg~(-1)( weight ratio of sulfur/fresh chrysanthemum). A comprehensively comparison of the 7 chemical constituents of C. morifolium cv. Boju fumigated with 7 different dosage of sulfur was conducted by HPLC analysis. In this paper,the results showed that the activities of PPO and POD enzymes decreased significantly in chrysanthemum processed by sulfur fumigation. The activities of PPO and POD enzymes decreased gradually with the increase of sulfur dosage. When the sulfur dosage was higher than 4 g·kg~(-1),the PPO enzyme was significantly reduced. When the sulfur dosage was higher than 8 g·kg~(-1),the PPO enzyme was completely inactivated. The effect of different sulfur dosage s on the chemical composition was investigated. In comparison,it was found that when the sulfur dosage was 8 g·kg~(-1),the content of chlorogenic acid was higher than the 4 g·kg~(-1) and that of the sample without sulfur fumigation. Thereafter,with the increase of the sulfur dosage,the content of chlorogenic acid was unchanged. It was speculated that when harvesting,the tissue of fresh flower was destroyed,which caused the activation of browning enzymes. Afterwards,the sulfur fumigation could significantly reduce the activity of browning enzymes,which prevented the conversion of phenols in the reaction substrates( chlorogenic acid and 3,5-dicaffeoylquninic acid) into terpenoids,and better retained quinic acid components. However,when the sulfur dosage reached 8 g·kg~(-1) or16 g·kg~(-1),the content of quinic acid components were no longer changed,which indicated that the sulfur dosage had reached the saturated dosage. Similarly,when the sulfur dosage was increased,the contents of flavonoid aglycones showed a downward trend except for luteolin-7-O-glucoside. It was speculated that the sulfur fumigation inhibited the activity of hydrolase,which reduced the hydrolysis of flavonoid glycosides to aglycones. However,the reaction mechanism needed further verification. In conclusion,although sulfur fumigation could significantly inhibit browning,different dosages of sulfur had a significant effect on the chemical composition of C. morifolium cv. Boju,which could affect the consistency of quality and the stability of the therapeutic effect. Excessive use of sulfur was likely to cause a large amount of SO2 residues in C. morifolium cv. Boju,Therefore,different Sulphur dosages had a significant effect on the quality of chrysanthemum,which therefore was not recommended in production. A small dose of sulfur could be used to prevent enzymatic browning. When the dosage of sulfur increased to a certain extent or reached a saturation state,a small dose of sulfur is recommended in necessary. In this paper,the correlation between the sulfur dosage,the enzyme activity,and the main chemical constituents of chrysanthemum was clarified. The experimental research provided the guidance for regulating the harvesting processing of chrysanthemum and the harvesting processing,and improving the quality of chrysanthemum.
Chromatography, High Pressure Liquid
;
Chrysanthemum
;
Fumigation
;
Quinic Acid
;
Sulfur
7.Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice
Kang Pa LEE ; Nan Hee CHOI ; Hyun Soo KIM ; Sanghyun AHN ; In Sik PARK ; Dea Won LEE
Nutrition Research and Practice 2018;12(1):13-19
BACKGROUND/OBJECTIVES: One of the mechanisms considered to be prevalent in the development of Alzheimer's disease (AD) is hyper-stimulation of microglia. Black chokeberry (Aronia melanocapa L.) is widely used to treat diabetes and atherosclerosis, and is known to exert anti-oxidant and anti-inflammatory effects; however, its neuroprotective effects have not been elucidated thus far. MATERIALS/METHODS: We undertook to assess the anti-inflammatory effect of the ethanolic extract of black chokeberry friut (BCE) in BV2 cells, and evaluate its neuroprotective effect in the lipopolysaccharide (LPS)-induced mouse model of AD. RESULTS: Following stimulation of BV2 cells by LPS, exposure to BCE significantly reduced the generation of nitric oxide as well as mRNA levels of numerous inflammatory factors such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). In addition, AD was induced in a mouse model by intraperitoneal injection of LPS (250 µg/kg), subsequent to which we investigated the neuroprotective effects of BCE (50 mg/kg) on brain damage. We observed that BCE significantly reduced tissue damage in the hippocampus by downregulating iNOS, COX-2, and TNF-α levels. We further identified the quinic acids in BCE using liquid chromatography-mass spectrometry (LCMS). Furthermore, we confirmed the neuroprotective effect of BCE and quinic acid on amyloid beta-induced cell death in rat hippocampal primary neurons. CONCLUSIONS: Our findings suggest that black chokeberry has protective effects against the development of AD.
Alzheimer Disease
;
Amyloid
;
Animals
;
Atherosclerosis
;
Brain
;
Cell Death
;
Cyclooxygenase 2
;
Ethanol
;
Hippocampus
;
Inflammation
;
Injections, Intraperitoneal
;
Interleukin-1beta
;
Mice
;
Mice, Inbred ICR
;
Microglia
;
Neurons
;
Neuroprotective Agents
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Phytochemicals
;
Quinic Acid
;
Rats
;
RNA, Messenger
;
Spectrum Analysis
;
Tumor Necrosis Factor-alpha
8.Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity.
Wei ZHANG ; Chun-Zhen WU ; Si-Yang FAN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):347-353
Gnaphalium affine D. Don, a medicinal and edible plant, has been used to treat gout in traditional Chinese medicine and popularly consumed in China for a long time. A detailed phytochemical investigation on the aerial part of G. affine led to the isolation of two new esters of caffeoylquinic acid named (-) ethyl 1, 4-di-O-caffeoylquinate (1) and (-) methyl 1, 4-di-O-caffeoylquinate (2), together with 35 known compounds (3-37). Their structures were elucidated by spectroscopic data and first-order multiplet analysis. All the isolated compounds were tested for their xanthine oxidase inhibitory activity with an in vitro enzyme inhibitory screening assay. Among the tested compounds, 1 (IC 11.94 μmol·L) and 2 (IC 15.04 μmol·L) showed a good inhibitory activity. The current results supported the medical use of the plant.
Adenine
;
analogs & derivatives
;
chemistry
;
isolation & purification
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Enzyme Activation
;
drug effects
;
Flavonoids
;
chemistry
;
isolation & purification
;
Gnaphalium
;
chemistry
;
Gout Suppressants
;
chemistry
;
isolation & purification
;
pharmacology
;
Hydroxybenzoates
;
chemistry
;
isolation & purification
;
Molecular Structure
;
Nuclear Magnetic Resonance, Biomolecular
;
Phytochemicals
;
chemistry
;
isolation & purification
;
pharmacology
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
chemistry
;
isolation & purification
;
pharmacology
;
Quinic Acid
;
analogs & derivatives
;
chemistry
;
isolation & purification
;
Xanthine Oxidase
;
antagonists & inhibitors
9.Chemical Constituents from the Aerial Parts of Bupleurum falcatum L. and Biological Evidences.
Nguyen Huu TUNG ; Takuhiro UTO ; Osamu MORINAGA ; Yukihiro SHOYAMA
Natural Product Sciences 2015;21(2):71-75
In this study, phytochemical investigation on the aerial parts of Bupleurum falcatum resulted in the isolation of fourteen compounds including three quinic acid derivatives (1 - 3), five flavonoids (4 - 8), three monoterpene glycosides (9 - 11), and three saikosaponins (12 - 14). Compound 1 was first isolated from nature and unambiguously determined to be 3-O-feruloyl 5-O-caffeoylquinic acid on the basis of the extensive spectroscopic evidence. Biological testing revealed that saikosaponin A (12) and saikosaponin D (13) showed moderate antiproliferative effects on HL-60 and HepG2 cancer cell lines.
Bupleurum*
;
Cell Line
;
Flavonoids
;
Glycosides
;
Quinic Acid
10.Chemical comparison of different Farfarae Flos by NMR-based metabolomic approaches.
Zheng-zheng ZHANG ; Hai-juan ZHI ; Xue-mei QIN ; Zhen-yu LI
Acta Pharmaceutica Sinica 2015;50(5):599-604
1H NMR-based metabolomic approach combined with multivariate statistical analysis was used to evaluate the quality of 21 Farfarae Flos (FF) samples from different growth regions. Principal component analysis showed that wild and cultivated FF could be separated clearly, suggesting a big chemical difference existed between them. Supervised PLS-DA analysis indicated that the wild samples showed higher levels of secondary metabolites, such as bauer-7-ene-3β, 16α-diol, chlorogenic acid, rutin, 7-(3'-ethylcrotonoyloxy)-1α-(2'-methyl-butyryloxy)-3, 14-dehydro-Z-notonipetranone (EMDNT), tussilagone, β-sitosterol and sitosterone. This is consistent with traditional experience that the quality of wild samples are better than that of cultivated ones. The content of pyrrolizidine alkaloids senkirkine also differed greatly among samples from different habitats. The Pearson correlation analysis showed that senkirkine is positively correlated with 4, 5-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 3,4-O-dicaffeoylquinic acid, rutin, kampferol analogues, to a statistically significant extent. The correlation between the toxic compounds and the bioactive components in FF should be further studied.
Chlorogenic Acid
;
Drugs, Chinese Herbal
;
chemistry
;
Flowers
;
chemistry
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Metabolomics
;
Quinic Acid
;
analogs & derivatives
;
Rutin
;
Sitosterols
;
Tussilago
;
chemistry

Result Analysis
Print
Save
E-mail