1.Analysis of Mechanism of Astragaloside Ⅳ in Regulating Ferroptosis Through SLC7A11/GPX4 Pathway Against Vascular Smooth Muscle Cell Proliferation
Guoting LI ; Changchao YANG ; Lin LIU ; Weikang LI ; Zixian ZHAO ; Quan SHEN ; Jingshan ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):159-167
ObjectiveTo investigate the effect of astragaloside Ⅳ(AS-Ⅳ) on the proliferation of vascular smooth muscle cells(VSMCs) induced by angiotensin Ⅱ(Ang Ⅱ) based on solute carrier family 7 member 11/glutathione peroxidase 4(SLC7A11/GPX4) pathway. MethodsPrimary rat thoracic aortic VSMCs were cultured by tissue explant method, and the cell types were identified by immunofluorescence. Cell counting kit-8(CCK-8) was used to determine the optimal concentration and time of AS-Ⅳ after Ang Ⅱ stimulation. The experiment was divided into blank group, model group, AS-Ⅳ group(40 μmol·L-1), Erastin group(0.5 μmol·L-1), Erastin+AS-Ⅳ group(0.5 μmol·L-1+40 μmol·L-1). The blank group was cultured in normal medium, the model group was cultured in medium containing Ang Ⅱ(0.1 μmol·L-1), and each administration group was cultured in medium containing Ang Ⅱ(0.1 μmol·L-1) and the corresponding doses of drug. CCK-8 and plate clone formation assay were used to detect the proliferation of cells in each group, Prussian blue staining was used to detect cell iron deposition, the content of reactive oxygen species(ROS) in cells was detected by fluorescence probe method, the content of malondialdehyde(MDA) was detected by thiobarbituric acid(TBA) method, and the protein levels of SLC7A11 and GPX4 in each group were detected by Western blot. ResultsPrimary rat thoracic aortic VSMCs were successfully cultured by tissue explant method, and immunofluorescence detection showed that positive expression of α-smooth muscle actin(α-SMA) and negative expression of vimentin in the cells, identifying them as VSMCs. The optimal concentration and time of AS-Ⅳ determined by CCK-8 were 40 μmol·L-1 and 24 h, respectively. Pharmacodynamic studies showed that compared with the blank group, the cell proliferation in the model group increased, the iron deposition in the cells increased, the contents of ROS and MDA increased, and the expression levels of SLC7A11 and GPX4 proteins decreased(P<0.05, P<0.01). Compared with the model group, the cell proliferation of the AS-Ⅳ group was inhibited, the iron deposition in the cells was decreased, the contents of ROS and MDA were decreased, and the expression levels of SLC7A11 and GPX4 proteins were increased(P<0.05, P<0.01). While in the Erastin group, the cell proliferation was increased, the iron deposition was increased, ROS and MDA contents were increased, and the expression levels of SLC7A11 and GPX4 proteins were decreased(P<0.05, P<0.01). Compared with the AS-Ⅳ group, Erastin+AS-Ⅳ group showed increased cell proliferation, increased iron deposition in cells, increased ROS and MDA contents, and decreased expression of SLC7A11 and GPX4 proteins(P<0.05). Compared with the Erastin group, the cell proliferation in Erastin+AS-Ⅳ group was inhibited, the iron deposition was decreased, the contents of ROS and MDA were decreased, and the expression levels of SLC7A11 and GPX4 proteins were increased(P<0.05, P<0.01). ConclusionAS-Ⅳ can inhibit ferroptosis by regulating the SLC7A11/GPX4 pathway, so as to weaken the proliferation of VSMCs, thus playing a role in the treatment of atherosclerosis.
2.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
3.Molecular Mechanism of Thymoquinone Inhibition on Malignant Proliferation of Acute Myeloid Leukemia Cells.
Jie LIN ; Fan-Lin ZENG ; Yan-Quan LIU ; Zhi-Min YAN ; Zuo-Tao LI ; Qing-Lin XU ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(2):311-318
OBJECTIVE:
To investigate the effects of thymoquinone on the proliferation of acute myeloid leukemia (AML) cells and its molecular mechanism, so as to provide theoretical basis for the basic research on the anti-leukemia of traditional Chinese medicine.
METHODS:
The HL-60 and THP-1 cells were treated with thymoquinone at different concentration gradients, cell proliferation was detected by CCK-8 method, morphological changes were detected by Wright-Giemsa method, apoptosis was detected by Annexin V/PI double staining flow cytometry, and apoptosis and signal pathway protein expression were detected by Western blot. Real-time quantitative fluorescence PCR and Western blot were used to detect the expression changes of high mobility family members of SRY-related proteins (SOX).
RESULTS:
Thymoquinone inhibited the malignant proliferation of HL-60 and THP-1 cells, up-regulated the expression of pro-apoptotic protein Bax, down-regulated the expression of anti-apoptotic protein Bcl-2 and Survivin, and hydrolyzed Caspase-3 to induce the apoptosis of HL-60 and THP-1 cells. Thymoquinone could also significantly down-regulate the phosphorylation of PI3K, Akt and mTOR, and inhibit the malignant biological characteristics of HL-60 and THP-1 cells by inhibiting the activation of PI3K/Akt/mTOR pathway. After thymoquinone intervention in HL-60 and THP-1 cells, the expression of SOX2 and SOX4 could be down-regulated significantly. At low concentration ( < 10 μmol/L), the expression of SOX12 was weakly affected by thymoquinone. With increasing concentration, the expression of SOX12 could be down-regulated, however, thymoquinone had no effect on SOX11 expression.
CONCLUSION
Thymoquinone can inhibit the proliferation of AML cells, and its mechanism may be related to inhibiting the activation of PI3K/Akt/mTOR signaling pathway, regulating the expression of apoptotic proteins and core members of SOX family.
Humans
;
Benzoquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Leukemia, Myeloid, Acute/metabolism*
;
Apoptosis/drug effects*
;
HL-60 Cells
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/metabolism*
;
THP-1 Cells
4.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
5.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
6.Artificial intelligence fluorescence method versus traditional flow cytometry for detection of sperm DFI in oligospermia patients.
Shao-Bin LIN ; Gui-Quan WANG ; Ping LI
National Journal of Andrology 2025;31(2):115-120
OBJECTIVE:
To explore the influence of oligospermia (OS) on the detection of sperm DNA fragmentation index (DFI) by fluorescence method based on artificial intelligence (AI) recognition and flow cytometry-based sperm chromatin structure assay (SCSA).
METHODS:
We collected semen samples from 201 males, including 50 azoospermia (AS) patients as negative controls, 90 OS patients (sperm concentration >0×10⁶/ml and <15×10⁶/ml), and 61 normal men (sperm concentration ≥15×10⁶/ml). Then we subdivided the OS patients into a mild OS (sperm concentration ≥10×10⁶/ml and <15×10⁶/ml), a moderate OS (sperm concentration ≥5×10⁶/ml and <10×10⁶/ml) and a severe/extremely severe OS group (sperm concentration >0×10⁶/ml and <5×10⁶/ml), with 30 cases in each group, and compared the results of DFI detection between the AI fluorescence method and traditional flow cytometry.
RESULTS:
The DFI value detected by AI fluorescence method showed statistically significant difference from that detected by flow cytometry in the AS, moderate OS and severe/extremely severe OS groups (P<0.01), the former even lower than the latter, but not in the normal control and the mild OS groups (P > 0.05). In the AS group, a dramatically lower rate of non-0 results was achieved by AI fluorescence method than by flow cytometry (8% vs 100%, P<0.01). The DFI values detected by AI fluorescence method exhibited a good linear correlation to those obtained by flow cytometry in the normal control and mild OS groups (R2 = 0.7470; R2 = 0.7180), but a poor linear correlation in the OS full-sample, moderate OS and severe/extremely severe OS groups (R2 = 0.3092; R2 = 0.3558; R2 = 0.2147).
CONCLUSION
The AI fluorescence method has a higher specificity and is more suitable than flow cytometry for detection of sperm DFI in OS patients. The DFI values obtained by the two methods are consistent with sperm concentration ≥10×10⁶/ml, but the accuracy of the results of detection may be affected with sperm concentration >0×10⁶/ml and <10×10⁶/ml.
Humans
;
Male
;
Flow Cytometry/methods*
;
Oligospermia/genetics*
;
Artificial Intelligence
;
Spermatozoa
;
Adult
;
DNA Fragmentation
;
Case-Control Studies
;
Fluorescence
7.Mechanism of Sangqi Qingxuan Liquid in Alleviating Vascular Endothelial Injury in Hypertension Focuses on β-Catenin.
Wei-Quan REN ; Xin ZENG ; Jiang-Quan LIAO ; Li HUANG ; Lin LI
Chinese journal of integrative medicine 2025;31(8):726-734
OBJECTIVE:
To explore the main components and potential mechanisms of Sangqi Qingxuan Liquid in the treatment of arterial vascular endothelial cells (AVECs) injury in hypertension through network pharmacology.
METHODS:
Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) were used to screen the active components of Sangqi Qingxuan Liquid (SQQX), which met the oral utilization rate and drug similarity criteria. An active component-target network was constructed using Cytoscape 3.6 software. A protein-protein interaction (PPI) network of targets associated with SQQX treatment for hypertension was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The Metascape database was used to perform enrichment analysis of gene ontology biological functions and MSigDB pathway enrichment analysis of proteins in the PPI network. Further analysis of the main components of SQQX was performed using UPLC-MS. Based on the results of network pharmacology, the mechanism of SQQX to improve the injury of AVECs in hypertension was verified through lentiviral transfection by Wnt/ β -catenin signaling pathway. AVECs induced by angiotensin II (Ang II ) was used to establish a model of endothelial function injury in hypertension. Cell viability, intracellular nitric oxide content, malonaldehyde content, and superoxide dismutase activity were measured to determine the optimal induction conditions. The optimal intervention conditions for SQQX were determined based on cell viability, cellular DNA activity, and the gradient method. The cells were further divided into blank, model, overexpression lentivirus negative control, overexpression lentivirus, overexpression lentivirus + SQQX intervention (2.47 mg/mL, 12 h), inhibition lentivirus negative control, inhibition lentivirus, and inhibition lentivirus + SQQX intervention (2.47 mg/mL, 12 h) groups. Finally, quantitative real-time PCR and Western blotting were performed to analyze the molecular mechanisms of SQQX in the Wnt/ β -catenin signaling pathway.
RESULTS:
The main SQQX components were betaine, buddleoside, and chlorogenic acid, in descending order. Network pharmacology analysis screened 12 pathways associated with the hypertensive vascular endothelium. The results showed that 1 µ mol/L for 12 h was the optimal condition for Ang II to induce AVECs injury, and 2.47 mg/mL SQQX intervention for 12 h was the optimal condition for treating AVECs injury. In the experimental validation based on the interaction network of the Wnt/ β -catenin signaling pathway, SQQX significantly decreased the expressions of β -catenin, Smad2, peroxisome proliferator-activated receptors (PPARs), endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) caused by the β -catenin overexpression lentivirus (P<0.05 or P<0.01). The function of vascular endothelial cells can be improved by the β -catenin inhibition lentivirus, and no obvious changes were observed after further intervention with SQQX.
CONCLUSION
SQQX may protect against AVECs injury by regulating the Wnt/β -catenin signaling pathway.
Drugs, Chinese Herbal/therapeutic use*
;
beta Catenin/metabolism*
;
Hypertension/metabolism*
;
Endothelial Cells/metabolism*
;
Protein Interaction Maps/drug effects*
;
Humans
;
Wnt Signaling Pathway/drug effects*
;
Network Pharmacology
;
Endothelium, Vascular/injuries*
;
Cell Survival/drug effects*
;
Angiotensin II/pharmacology*
;
Nitric Oxide/metabolism*
8.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
9.Food-derived bioactive peptides: health benefits, structure‒activity relationships, and translational prospects.
Hongda CHEN ; Jiabei SUN ; Haolie FANG ; Yuanyuan LIN ; Han WU ; Dongqiang LIN ; Zhijian YANG ; Quan ZHOU ; Bingxiang ZHAO ; Tianhua ZHOU ; Jianping WU ; Shanshan LI ; Xiangrui LIU
Journal of Zhejiang University. Science. B 2025;26(11):1037-1058
Food-derived bioactive peptides (FBPs), particularly those with ten or fewer amino acid residues and a molecular weight below 1300 Da, have gained increasing attention for their safe, diverse structures and specific biological activities. The development of FBP-based functional foods and potential medications depends on understanding their structure‒activity relationships (SARs), stability, and bioavailability properties. In this review, we provide an in-depth overview of the roles of FBPs in treating various diseases, including Alzheimer's disease, hypertension, type 2 diabetes mellitus, liver diseases, and inflammatory bowel diseases, based on the literature from July 2017 to Mar. 2023. Subsequently, attention is directed toward elucidating the associations between the bioactivities and structural characteristics (e.g., molecular weight and the presence of specific amino acids within sequences and compositions) of FBPs. We also discuss in silico approaches for FBP screening and their limitations. Finally, we summarize recent advancements in formulation techniques to improve the bioavailability of FBPs in the food industry, thereby contributing to healthcare applications.
Humans
;
Peptides/therapeutic use*
;
Structure-Activity Relationship
;
Functional Food
;
Diabetes Mellitus, Type 2/drug therapy*
;
Biological Availability
;
Alzheimer Disease/drug therapy*
;
Inflammatory Bowel Diseases/drug therapy*
;
Hypertension/drug therapy*
;
Liver Diseases/drug therapy*
;
Bioactive Peptides, Dietary
10.Expert consensus on peri-implant keratinized mucosa augmentation at second-stage surgery.
Shiwen ZHANG ; Rui SHENG ; Zhen FAN ; Fang WANG ; Ping DI ; Junyu SHI ; Duohong ZOU ; Dehua LI ; Yufeng ZHANG ; Zhuofan CHEN ; Guoli YANG ; Wei GENG ; Lin WANG ; Jian ZHANG ; Yuanding HUANG ; Baohong ZHAO ; Chunbo TANG ; Dong WU ; Shulan XU ; Cheng YANG ; Yongbin MOU ; Jiacai HE ; Xingmei YANG ; Zhen TAN ; Xiaoxiao CAI ; Jiang CHEN ; Hongchang LAI ; Zuolin WANG ; Quan YUAN
International Journal of Oral Science 2025;17(1):51-51
Peri-implant keratinized mucosa (PIKM) augmentation refers to surgical procedures aimed at increasing the width of PIKM. Consensus reports emphasize the necessity of maintaining a minimum width of PIKM to ensure long-term peri-implant health. Currently, several surgical techniques have been validated for their effectiveness in increasing PIKM. However, the selection and application of PIKM augmentation methods may present challenges for dental practitioners due to heterogeneity in surgical techniques, variations in clinical scenarios, and anatomical differences. Therefore, clear guidelines and considerations for PIKM augmentation are needed. This expert consensus focuses on the commonly employed surgical techniques for PIKM augmentation and the factors influencing their selection at second-stage surgery. It aims to establish a standardized framework for assessing, planning, and executing PIKM augmentation procedures, with the goal of offering evidence-based guidance to enhance the predictability and success of PIKM augmentation.
Humans
;
Consensus
;
Dental Implants
;
Mouth Mucosa/surgery*
;
Keratins

Result Analysis
Print
Save
E-mail