1.The effects of different intensities of aerobic exercise for 8 weeks on neurogenesis, depression, and anxiety in young mice
Mi Yang JEON ; Quan Feng LIU ; Chi Yang YOON ; Bong Gyu KIM ; Ji Hyun KIM ; Ha Jin JEONG ; Songhee JEON
Journal of Korean Biological Nursing Science 2025;27(2):213-223
Purpose:
This study aimed to assess the impact of aerobic exercise at different intensities over an eight-week period on the expression and activation of cortical synaptic proteins, with the potential to reduce anxiety and improve memory in young mice.
Methods:
Seven-week-old C57BL/6 mice were subjected to treadmill exercises at low (n = 10), moderate (n = 10), and high intensity (n = 10) for eight weeks. Behavioral assessments were conducted to evaluate anxiety and cognitive function. To explore the underlying mechanisms, we measured the phosphorylated levels of extracellular signal-regulated kinase (ERK), cyclic adenosine monophosphate response-binding protein (CREB), protein kinase (AKT), adenosine monophosphate activated protein kinase (AMPK), synapsin (S9, S549, S609), and PSD-95 in the cortex, as these are associated with synaptic strength. Additionally, the expression of doublecortin (DCX), a neurogenic factor, was analyzed in the hippocampus.
Results:
Exercise led to reductions in depressive and anxiety-related behaviors and elevated the levels of phosphorylated ERK, CREB, AKT, AMPK, synapsin (S9, S549, S609), and PSD-95 in the cortex of young mice. Furthermore, exercise increased DCX expression in the hippocampus. Moderate-intensity exercise yielded more pronounced effects than other intensities.
Conclusion
The findings of this research indicate that consistent moderate-intensity exercise increases synaptic strength and reduces depression and anxiety in young mice by activating multiple factors.
2.The effects of different intensities of aerobic exercise for 8 weeks on neurogenesis, depression, and anxiety in young mice
Mi Yang JEON ; Quan Feng LIU ; Chi Yang YOON ; Bong Gyu KIM ; Ji Hyun KIM ; Ha Jin JEONG ; Songhee JEON
Journal of Korean Biological Nursing Science 2025;27(2):213-223
Purpose:
This study aimed to assess the impact of aerobic exercise at different intensities over an eight-week period on the expression and activation of cortical synaptic proteins, with the potential to reduce anxiety and improve memory in young mice.
Methods:
Seven-week-old C57BL/6 mice were subjected to treadmill exercises at low (n = 10), moderate (n = 10), and high intensity (n = 10) for eight weeks. Behavioral assessments were conducted to evaluate anxiety and cognitive function. To explore the underlying mechanisms, we measured the phosphorylated levels of extracellular signal-regulated kinase (ERK), cyclic adenosine monophosphate response-binding protein (CREB), protein kinase (AKT), adenosine monophosphate activated protein kinase (AMPK), synapsin (S9, S549, S609), and PSD-95 in the cortex, as these are associated with synaptic strength. Additionally, the expression of doublecortin (DCX), a neurogenic factor, was analyzed in the hippocampus.
Results:
Exercise led to reductions in depressive and anxiety-related behaviors and elevated the levels of phosphorylated ERK, CREB, AKT, AMPK, synapsin (S9, S549, S609), and PSD-95 in the cortex of young mice. Furthermore, exercise increased DCX expression in the hippocampus. Moderate-intensity exercise yielded more pronounced effects than other intensities.
Conclusion
The findings of this research indicate that consistent moderate-intensity exercise increases synaptic strength and reduces depression and anxiety in young mice by activating multiple factors.
3.The effects of different intensities of aerobic exercise for 8 weeks on neurogenesis, depression, and anxiety in young mice
Mi Yang JEON ; Quan Feng LIU ; Chi Yang YOON ; Bong Gyu KIM ; Ji Hyun KIM ; Ha Jin JEONG ; Songhee JEON
Journal of Korean Biological Nursing Science 2025;27(2):213-223
Purpose:
This study aimed to assess the impact of aerobic exercise at different intensities over an eight-week period on the expression and activation of cortical synaptic proteins, with the potential to reduce anxiety and improve memory in young mice.
Methods:
Seven-week-old C57BL/6 mice were subjected to treadmill exercises at low (n = 10), moderate (n = 10), and high intensity (n = 10) for eight weeks. Behavioral assessments were conducted to evaluate anxiety and cognitive function. To explore the underlying mechanisms, we measured the phosphorylated levels of extracellular signal-regulated kinase (ERK), cyclic adenosine monophosphate response-binding protein (CREB), protein kinase (AKT), adenosine monophosphate activated protein kinase (AMPK), synapsin (S9, S549, S609), and PSD-95 in the cortex, as these are associated with synaptic strength. Additionally, the expression of doublecortin (DCX), a neurogenic factor, was analyzed in the hippocampus.
Results:
Exercise led to reductions in depressive and anxiety-related behaviors and elevated the levels of phosphorylated ERK, CREB, AKT, AMPK, synapsin (S9, S549, S609), and PSD-95 in the cortex of young mice. Furthermore, exercise increased DCX expression in the hippocampus. Moderate-intensity exercise yielded more pronounced effects than other intensities.
Conclusion
The findings of this research indicate that consistent moderate-intensity exercise increases synaptic strength and reduces depression and anxiety in young mice by activating multiple factors.
4.The effects of different intensities of aerobic exercise for 8 weeks on neurogenesis, depression, and anxiety in young mice
Mi Yang JEON ; Quan Feng LIU ; Chi Yang YOON ; Bong Gyu KIM ; Ji Hyun KIM ; Ha Jin JEONG ; Songhee JEON
Journal of Korean Biological Nursing Science 2025;27(2):213-223
Purpose:
This study aimed to assess the impact of aerobic exercise at different intensities over an eight-week period on the expression and activation of cortical synaptic proteins, with the potential to reduce anxiety and improve memory in young mice.
Methods:
Seven-week-old C57BL/6 mice were subjected to treadmill exercises at low (n = 10), moderate (n = 10), and high intensity (n = 10) for eight weeks. Behavioral assessments were conducted to evaluate anxiety and cognitive function. To explore the underlying mechanisms, we measured the phosphorylated levels of extracellular signal-regulated kinase (ERK), cyclic adenosine monophosphate response-binding protein (CREB), protein kinase (AKT), adenosine monophosphate activated protein kinase (AMPK), synapsin (S9, S549, S609), and PSD-95 in the cortex, as these are associated with synaptic strength. Additionally, the expression of doublecortin (DCX), a neurogenic factor, was analyzed in the hippocampus.
Results:
Exercise led to reductions in depressive and anxiety-related behaviors and elevated the levels of phosphorylated ERK, CREB, AKT, AMPK, synapsin (S9, S549, S609), and PSD-95 in the cortex of young mice. Furthermore, exercise increased DCX expression in the hippocampus. Moderate-intensity exercise yielded more pronounced effects than other intensities.
Conclusion
The findings of this research indicate that consistent moderate-intensity exercise increases synaptic strength and reduces depression and anxiety in young mice by activating multiple factors.
5.Exploration of Rat Fetal Lung Tissue Fixation Methods
Liyu LIU ; Bo JI ; Xiaoxuan LIU ; Yang FANG ; Ling ZHANG ; Tingting GUO ; Ye QUAN ; Hewen LI ; Yitian LIU
Laboratory Animal and Comparative Medicine 2025;45(4):432-438
ObjectiveThis study explores the methods of lung tissue extraction and fixation required for pathological studies of fetal rats, based on the unique physiological structure of fetal rat lung tissue and existing lung tissue fixation techniques for adult rats. MethodsSix pregnant adult SD rats at 20.5 days of gestation were subjected to cesarean section to obtain fetal rats. Four healthy fetal rats with similar body weight, vital signs, and respiratory status were selected from each pregnant rat, and they were randomly divided into the following groups using a random number table: direct lung infiltration group, lung infiltration group after intratracheal infusion, whole-body infiltration group of fetal rats, and whole-body infiltration group after intratracheal infusion of fetal rats. To systematically compare and analyze the anatomical morphology under different fixation methods, lung tissues from four groups of fetal rats were harvested, perfused, and fixed, and the gross morphology of lung tissues in each group was observed. Paraffin sections were prepared and stained with Hematoxylin-Eosin (H&E). The histological morphology of the whole lung, alveoli, and bronchi was further examined under optical microscopy. ResultsIn the direct lung infiltration group, the hilar structures were unclear, lung lobation was indistinct, the shape was irregular, lung cavities were small, and alveoli and bronchi were shrunken. In the lung infiltration group after intratracheal infusion, the hilar structures were clear, lobation was pronounced, the shape was regular, lung cavities were large, and alveoli and bronchi were full. Both the whole-body infiltration group and whole-body infiltration group after intratracheal infusion of fetal rats exhibited visible lungs, hearts, skins, and other organs. The lung tissues of both groups showed obvious lobulation, irregular shape, and damage at the margins of lung lobes. In the whole-body infiltration group, the thoracic cavities of the fetus were flattened, lung cavities were small, and alveoli and bronchi were shrunken. In the whole-body infiltration group after intratracheal infusion of fetal rats, the fetal thoracic cavities were full, lung cavities were large, and alveoli and bronchi were relatively full. ConclusionThe lung infiltration after intratracheal infusion method for fetal rat lung tissue fixation outperforms direct lung infiltration, whole-body infiltration of fetal rats, and whole-body infiltration after intratracheal infusion of fetal rats in terms of preservation of the lung tissue's original morphology, paraffin sectioning, staining, and pathological observation and analysis. The embedding, sectioning, and staining processes are also simple and save consumables. Therefore, intratracheal infusion followed by lung infiltration method is recommended for fixation in histopathological observation of fetal rat lung tissue.
6.Compilation Instructions for Expert Consensus on Clinical Application of Dieda Huoxue Capsules
Yuhang MENG ; Jinghua GAO ; Minshan FENG ; Quan JI ; Jin JIN ; Ting CHENG ; Yongyao LI ; Yuanyuan LI ; Xin CUI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):177-183
The Compilation Instructions for Expert Consensus on Clinical Application of Dieda Huoxue capsules systematically expound the development methods and evidence-based basis of this consensus. In view of the weak clinical application evidence and ambiguous indications of Dieda Huoxue capsules, the Institute of Basic Research in Clinical Medicine of the China Academy of Chinese Medical Sciences and Wangjing Hospital took the lead and collaborated with 33 experts from 28 medical institutions nationwide. They strictly followed the World Health Organization (WHO) guideline-making norms and the Grading of Recommendations Assessment, Development and Evaluations (GRADE) evidence-grading system and completed the compilation through multidisciplinary cooperation. The workflow included constructing clinical questions (19 items were screened by the nominal group technique), retrieving evidence (from Chinese and English databases and grey literature), assessing safety (integrating drug monitoring data and clinical investigations), and forming recommendations and consensus suggestions (3 recommendations were reached via the GRADE grid method, and 16 consensus suggestions were reached by the majority vote rule). The results indicate that the consensus clearly states that this medicine (Dieda Huoxue capsules) is applicable to conditions like traumatic injury, blood stasis-induced pain, and sudden lumbar sprains. The recommended dose is 6 capsules each time, twice a day. Combining oral administration with external application can enhance the efficacy, and elderly patients should take the medicine at intervals. Safety monitoring suggests that it should be used with caution in people with a bleeding tendency and those with an allergic constitution. The compilation process involved three rounds of reviews by internal and external experts. Literature analysis, the Delphi method, and clinical applicability tests were employed to ensure methodological rigor. The compilation instructions comprehensively present key aspects such as project approval and registration, conflict-of-interest statements, and evidence evaluation through 12 appendices, providing methodological support for the clinical translation of the consensus. In the future, it will be continuously improved through a dynamic revision mechanism.
7.Development of an Analytical Software for Forensic Proteomic SAP Typing
Feng HU ; Meng-Jiao WANG ; Jia-Lei WU ; Dong-Sheng DING ; Zhi-Yuan YANG ; An-Quan JI ; Lei FENG ; Jian YE
Progress in Biochemistry and Biophysics 2025;52(9):2406-2416
ObjectiveThe proteome of biological evidence contains rich genetic information, namely single amino acid polymorphisms (SAPs) in protein sequences. However, due to the lack of efficient and convenient analysis tools, the application of SAP in public security still faces many challenges. This paper aims to meet the application requirements of SAP analysis for forensic biological evidence’s proteome data. MethodsThe software is divided into three modules. First, based on a built-in database of common non-synonymous single nucleotide polymorphisms (nsSNPs) and SAPs in East Asian populations, the software integrates and annotates newly identified exonic nsSNPs as SAPs, thereby constructing a customized SAP protein sequence database. It then utilizes a pre-installed search engine—either pFind or MaxQuant—to perform analysis and output SAP typing results, identifying both reference and variant types, along with their corresponding imputed nsSNPs. Finally, SAPTyper compares the proteome-based typing results with the individual’s exome-derived nsSNP profile and outputs the comparison report. ResultsSAPTyper accepts proteomic DDA mass spectrometry raw data (DDA acquisition mode) and exome sequencing results of nsSNPs as input and outputs the report of SAPs result. The pFind and Maxquant search engines were used to test the proteome data of 2 hair shafts of2 individuals, and both obtained SAP results. It was found that the results of the Maxquant search engine were slightly less than those of pFind. This result shows that SAPTyper can achieve SAP fingding function. Moreover, the pFind search engine was used to test the proteome data of 3 hair shafts from 1 European person and 1 African person in the literature. Among the sites fully matched by the literature method, sites detected by SAPTyper are also included; for semi-matching sites, that is, nsSNPs are heterozygous, both literature method and SAPTyper method had the risk of missing detection for one type of the allele. Comparing the analysis results of SAPTyper with the SAP test results reported in the literature, it was found that some imputed nsSNP sites identified by the literature method but not detected by SAPTyper had a MAF of less than 0.1% in East Asian populations, and therefore they were not included in the common nsSNP database of East Asian populations constructed by this software. Since the database construction of this software is based on the genetic variation information of East Asian populations, it is currently unable to effectively identify representative unique common variation sites in European or African populations, but it can still identify SAP sites shared by these populations and East Asian populations. ConclusionAn automated SAP analysis algorithm was developed for East Asian populations, and the software named SAPTyper was developed. This software provides a convenient and efficient analysis tool for the research and application of forensic proteomic SAP and has important application prospects in individual identification and phenotypic inference based on SAP.
8.Bioequivalence study of entecavir tablets in healthy Chinese subjects under fasting condition
Juan ZHANG ; Meng WANG ; Ming HUANG ; Ji WANG ; Quan-Ying ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(9):1311-1315
Objective To evaluate the pharmacokinetics and bioequivalence of two entecavir tablets under fasting condition in Chinese healthy volunteers.Methods A single oral dose of 0.50 mg entecavir test and reference formulations was given to 30 healthy volunteers in the fasting state according to two randomized open-label crossover clinical studies.Plasma concentrations were determined by HPLC-MS/MS after deproteinized with acetonitrile.The pharmacokinetic parameters were calculated by WinNonlin 6.4.The bioequivalence of entecavir tablets test and its reference in the fasting state were evaluated respectively.Results In the fasting state,the main pharmacokinetic parameters of entecavir were as follows:Cmax were(4 390.00±1 257.56)and(4 421.00±1 239.55)pg·mL-1;tmax were 0.67(0.33,2.00)and 0.75(0.50,2.00)h;t1/2were(29.71±14.50)and(35.43±16.58)h,AUC0_72h were(12 252.43±2 671.28)and(12 063.43±2 151.50)pg·mL-1·h.The 90%confidence intervals of the mean ratio of Cmax,AUC0-72h and AUC0-∞ of the text and reference formulations were all within the equivalent interval of 80.00%-125.00%.Conclusion The entecavir tablets test and its reference were bioequivalent in the fasting state.
9.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
10.Integrated Detection Techniques for Forensic DNA and DNA Methylation Markers
Na YI ; Guang-Bin ZHAO ; Ke-Lai KANG ; Yi-Ren YAO ; Ke-Li GUO ; Jie ZHAO ; Chi ZHANG ; Lei MIAO ; Le WANG ; An-Quan JI
Progress in Biochemistry and Biophysics 2024;51(9):2156-2167
DNA genetic markers have always played important roles in individual identification, kinship analysis, ancestry inference and phenotype characterization in the field of forensic medicine. DNA methylation has unique advantages in biological age inference, body fluid identification and prediction of phenotypes. The majority of current studies independently examine DNA and DNA methylation markers using various workflows, and they use various analytical procedures to interpret the biological information these two markers present. Integrated methods detect DNA and DNA methylation markers simultaneously through a single experimental workflow using the same preparation of sample. Therefore, they can effectively reduce consumption of time and cost, streamline experimental procedures, and preserve valuable DNA samples taken from crime scenes. In this paper, the integrated detection approaches of DNA and DNA methylation markers on different detection platforms were reviewed. In order to convert methylation modifications to detectable forms, several options were available for pretreatment of genomic DNA, including digestion with methylation-sensitive restriction enzyme, affinity enrichment of methylated fragments, conversion of methylated or unmethylated cytosine. Multiplexed primers can be designed for DNA markers and converted DNA methylation markers for co-amplification. The schemes of using capillary electrophoresis platform for integrated detection add the pretreatment of genomic DNA on the basis of detecting DNA genetic markers. DNA and DNA methylation markers are then integrated by co-amplification. But the limited number of fluorescent options available and the length of amplicons restrict the type and quantity of markers that can be integrated into a panel. Pyrophosphate sequencing also supports integrated detection of DNA and DNA methylation markers. On this platform, due to the conversion of unmethylated cytosine to thymine after treatment with bisulfite, the methylation level of CpG site can be directly calculated using the peak height ratio of cytosine bases and thymine bases. Therefore, the methylation levels and SNP typing can be simultaneously obtained. However, due to the limited read length of sequencing, the detection of markers with longer amplicons is restricted. It is not conducive to fully interpret the complete information of the target sequence. Next-generation sequencing also supports integrated detection of DNA and DNA methylation markers. A preliminary experimental process including DNA extraction, pretreatment of genomic DNA, co-preparation of DNA and DNA methylation library and co-sequencing, has been formed based on the next-generation sequencing platform. It confirmed the feasibility of next-generation sequencing technology for integrated detection of DNA and DNA methylation markers. In field of biomedicine, various integrated detection schemes and corresponding data analysis approaches of DNA and DNA genetic markers developed based on the above detection process.Co-analysis can simultaneously obtain the genomic genetic and epigenetic information through a single analytic process. These schemes suggest that next-generation sequencing may be an effective method for achieving more accurate and highly integrated detection, helping to explore the potential for application in forensic biological samples. We finally explore the impact of interactions between sites and different pretreatment methods on the integrated detection of DNA and DNA methylation markers, and also propose the challenge of applying third-generation sequencing for integrated detection in forensic samples.

Result Analysis
Print
Save
E-mail