1.Exploring the Correlation between Pyroptosis and Immune Microenvironment Dysregulation in Rheumatoid Arthritis from the Perspective of "Ying Decline and Wei Attack"
Yancun LI ; Shu ZHU ; Yuhan WANG ; Yuan QU ; Yuan LIU ; Ping JIANG
Journal of Traditional Chinese Medicine 2025;66(5):464-467
As a complex autoimmune disease, rheumatoid arthritis (RA) involves immune microenvironment dysregulation resulting from excessive activation of pyroptosis, which is a crucial factor in disease progression. Based on the theory of ying-wei in traditional Chinese medicine, "ying decline and wei attack" is considered the fundamental pathogenesis of RA. Pyroptosis serves as a microscopic manifestation of this concept, suggesting a potential correlation between "ying decline and wei attack" and pyroptosis nd immune microenvironment dysregulation in RA. Accordingly, treatment principles based on this theory are proposed: in the early stage of the disease, boosting wei to consolidate the exterior, and regulating ying to dispel pathogens; in the middle and late stages, harmonizing ying to remove stagnation, and nourishing its transformational source.
2.Distribution characteristics, source apportionment, and health risk assessment of metals and metalloids in PM2.5 in a southern city in 2019
Yaxin QU ; Suli HUANG ; Chao WANG ; Jie JIANG ; Jiajia JI ; Daokui FANG ; Shaohua XIE ; Xiaoheng LI ; Ning LIU
Journal of Environmental and Occupational Medicine 2025;42(2):196-204
Background Metals and metalloids in fine particulate matter (PM2.5) may cause damage to the respiratory and circulatory systems of the human body, and long-term exposure is prone to causing chronic poisoning, cancer, and other adverse effects. Objective To assess the distribution characteristics of metals and metalloids in outdoor PM2.5 in a southern city of China, conduct source apportionment, and evaluate the associated health risks, thereby providing theoretical support for further pollution control measures. Methods PM2.5 samples were collected in districts A, B, and C of a southern China city, and the concentrations of 17 metals and metalloids were detected by inductively coupled plasma-mass spectrometry (ICP-MS). Pollution sources were assessed through enrichment factor and principal components analysis, and the main pollution sources were quantified using absolute principal component scores-multivariate linear regression (APCS-MLR). Health risks were evaluated based on the Technical guide for environmental health risk assessment of chemical exposure (WS/T777—2021). Results The ambient air PM2.5 concentrations in the city were higher in winter and spring, and lower in summer and autumn. The annual average concentrations of ambient PM2.5 in districts A, B, and C were 36.7, 31.9, and 24.4 μg·m−3, respectively. The ambient PM2.5 levels in districts B and C were below the second-grade limit set by the Ambient air quality standards (GB 3095—2012). The enrichment factors of cadmium (Cd), aluminum (Al), and antimony (Sb) were greater than 10, those of copper (Cu), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), and molybdenum (Mo) fell between 1 and 10, and those of manganese (Mn), vanadium (V), chromium (Cr), cobalt (Co), barium (Ba), beryllium (Be), and uranium (U) were below or equal to 1. The comprehensive evaluation of source analysis showed that the main pollution sources in districts A and C and the whole city were coal-burning. In district B, the main pollution source was also coal combustion, followed by industrial process sources and dust sources. The carcinogenic risks of As and Cr were between 1×10−6 and 1×10−4. However, the hazard quotients for 15 metals and metalloids in terms of non-carcinogenic risk were below 1. Conclusion Cr and As in the atmospheric PM2.5 of the city present a certain risk of cancer and should be paid attention to. In addition, preventive control measures should be taken against relevant pollution sources such as industrial emission, dust, and coal burning.
3.General pattern of GSK3/Nrf2-regulated biological rhythms in organismal aging
Yilin CHEN ; Xiaobo JIANG ; Honglin QU ; Ruilian LIU
Chinese Journal of Tissue Engineering Research 2025;29(6):1257-1264
BACKGROUND:Disruption of biological rhythms(circadian rhythms)is a typical problem associated with aging.Maintaining the normal function of biological rhythms may be a promising anti-aging strategy.Expression of nuclear factor erthroid 2-related factor 2(Nrf2)is biologically regulated.The glycogen synthase kinase 3(GSK3)system represents a"regulatory valve"that controls subtle oscillations in Nrf2 levels.Circadian changes in the transcript levels of antioxidant genes can influence the response of organisms to oxidative stress.However,the specific molecular mechanism of GSK3/Nrf2 in regulating organismal aging is still puzzling. OBJECTIVE:To search for the general pattern of GSK3/Nrf2-regulated biological rhythms in organismal aging by reviewing the literature in this field. METHODS:The bibliographic method was used to search,review and screen the relevant literature using the keywords of"glycogen synthase kinase 3,nuclear factor erthroid 2-related factor 2,biorhythms and aging"to lay a theoretical foundation for the analysis of the whole paper.Comparative analysis method,through reading and analyzing the obtained literature,was performed to compare the similarities and differences between the literature,thereby providing reasonable theoretical support for the argument.Further comparative analysis of the literature was conducted to clarify the relationship between the relevant indicators as well as the ideas for analysis throughout the text. RESULTS AND CONCLUSION:GSK3 can indirectly regulate Nrf2 expression through the regulation of rhythm genes.GSK3 and Nrf2 are components of anti-aging programs and are associated with biological rhythms.In addition,GSK3/Nrf2 is involved in several metabolic pathways,including those associated with age-related diseases(type 2 diabetes and cancer)and neurodegenerative diseases.
4.Mechanism of Huangqi Guizhi Wuwutang in Treatment of Sarcopenia Associated with Rheumatoid Arthritis by Improving Skeletal Muscle Homeostasis Through Regulation of Autophagy
Yakun WAN ; Yuan LIU ; Yuan QU ; Jingyu GUO ; Ting LIU ; Zhihui BAI ; Di ZHANG ; Ping JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):12-23
ObjectiveThis study aims to explore the mechanism of action of Huangqi Guizhi Wuwutang in treating rheumatoid arthritis (RA)-associated sarcopenia by regulating autophagy and improving skeletal muscle homeostasis based on network pharmacology,bioinformatics,machine learning,and animal experiments. MethodsActive ingredients and targets of Huangqi Guizhi Wuwutang were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),PubChem,and SwissTargetPrediction databases. RA-related datasets were retrieved from the GEO database,and differential genes were screened. Sarcopenia-related targets were searched through GeneCards and the Comparative Toxicology Database (CTD),and autophagy-related gene sets were downloaded from the Human Autophagy Database (HADb). Their intersection was analyzed to identify autophagy-related therapeutic targets,followed by enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database,and key targets were selected using multiple methods. Machine learning was applied to predict models based on the expression profiles of intersecting targets,and nomogram models were constructed based on key targets. Molecular docking of the top four active ingredients with key targets was performed using AutoDockVina. A collagen-induced arthritis (CIA) rat model was established using bovine type Ⅱ collagen,with SD rats divided into groups including a blank group,a model group,and low-,medium-,and high-dose groups of Huangqi Guizhi Wuwutang (2.44,4.88,and 9.76 g·kg-1) and administered for five consecutive weeks. Joint scores and gastrocnemius muscle mass were recorded and analyzed after modeling. Hematoxylin and eosin (HE) staining and Masson's staining were used to observe pathological changes in muscle tissue. Immunofluorescence staining was applied to observe the protein expression levels of myosin heavy chain (MYHC) and insulin-like growth factor-1 (IGF-1) in skeletal muscle. Western blot was used to detect the protein expression levels of autophagy-related proteins ATG5,Beclin1,LC3B,muscle-specific proteins (MuRF1),MaFbx,and MYHC. Real-time quantitative reverse transcription PCR (Real-time PCR) was performed to measure the mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,MaFbx,and MYHC in muscle tissue. ResultsNetwork pharmacology revealed that Huangqi Guizhi Wuwutang shared 25 common targets with autophagy genes related to RA-associated sarcopenia. The PPI network and machine learning identified six key targets,which were primarily involved in autophagy and inflammatory pathways. Animal experiments showed that compared to the blank group,the model group had significantly higher joint scores (P<0.01) and lower gastrocnemius muscle index (P<0.01). HE staining indicated a significant reduction in the cross-sectional area of gastrocnemius muscle fibers,with notable inflammatory cell infiltration and muscle atrophy in the model group. Masson's staining revealed obvious collagen fiber proliferation and deposition,with significant muscle fibrosis in the model group. The protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx were significantly increased (P<0.01),while the protein expression of MYHC and IGF1 was significantly downregulated (P<0.01). Compared with the model group,the high-dose group of Huangqi Guizhi Wuwutang showed significantly reduced protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx (P<0.01) and increased protein expression levels of MYHC and IGF1 (P<0.01). The cross-sectional area of muscle fibers increased,and the muscle cell morphology approached normal. Moreover,pathological abnormalities in the gastrocnemius muscle were significantly improved,with reduced collagen fiber proliferation (P<0.01). ConclusionHuangqi Guizhi Wuwutang can mediate autophagy by regulating the expression of ATG5,Beclin1,LC3B,and IGF1,thereby reducing skeletal muscle catabolism and improving skeletal muscle homeostasis,which contributes to the treatment of RA-associated sarcopenia. The findings provide insight into the mechanisms underlying the effects of Huangqi Guizhi Wuwutang in the treatment of RA-related sarcopenia and offer a reference for its enhanced clinical application.
5.Effects of amygdalin on permeability of microvascular endothelial cells induced by influenza virus FM1
Yi WANG ; Shu-Yan QU ; Qi-Qi JIANG ; Yan-Chun ZHONG
The Chinese Journal of Clinical Pharmacology 2024;40(6):820-824
Objective To investigate the effect of amygdalin on the permeability increase of microvascular endothelial cells(PMVEC)induced by influenza A virus FM1 and its mechanism.Methods The PMVEC cells were randomly divided into control group,model group(100 TCID50 FM1),amygdalin low-dose group(100 TCID50 FM1+4.0 mg·mL-1 amygdalin),amygdalin medium-dose group(100 TCID50 FM1+8.0 mg·mL-1 amygdalin),amygdalin high-dose group(100 TCID50 FM1+16.0 mg·mL-1 amygdalin)and 740Y-P group(100 TCID50 FM1+16.0 mg·mL-1 amygdalin+50 μmol·L-1 PI3K activator 740Y-P).Methyl thiazolyl tetrazolium(MTT)method,Transwell method,enzyme linked immunosorbent assay(ELISA)method and Western blot method were used to detect cell proliferation,cell permeability,inflammatory factor expression level and protein expression level in each group,respectively.Results Interleukin-6(IL-6)levels in control,model,amygdalin-L,amygdalin-M,amygdalin-H groups were(50.12±3.16),(93.12±5.61),(80.33±6.24),(70.05±5.46)and(61.03±4.68)pg·mL-1,respectively;the levels of tumor necrosis factor-α(TNF-α)in each group were(101.31±9.24),(167.05±10.31),(142.02±10.13),(125.34±9.87)and(112.44±8.05)pg·mL-1,respectively.The cell transepithelial resistance(TER)of control,model,amygdalin-L,amygdalin-M,amygdalin-H and 740Y-P groups were(53.01±4.17),(24.98±2.66),(30.01±3.49),(36.84±3.25),(46.23±4.31),(30.21±3.16)Ω × cm2;phosphorylated phosphatidylinositol-3 hydroxy kinase(p-PI3K)protein levels in each group were 0.34±0.04,1.01±0.09,0.80±0.08,0.61±0.07,0.43±0.05,0.87±0.09,respectively;phosphorylated mammalian target of repamycin(p-mTOR)levels in each group were 0.27±0.03,0.82±0.10,0.60±0.06,0.42±0.03,0.31±0.02 and 1.01±0.12,respectively.Compared model group with control group;compared amygdalinp-L,-M,-H groups with model group;compared amygdalinp-H group with 740Y-P group,the differences of the above indicators were all statistically significant(all P<0.05).Conclusion Amygdalin may decrease the permeability of PMVEC cells induced by influenza virus FM1 by inhibiting PI3K/AKT/mTOR pathway.
6.The effects of exercise preconditioning on angiogenesis and protein expression after cerebral ischemia and reperfusion
Lu ZHOU ; Liya TANG ; Qiong JIANG ; Meiyan HE ; Xiaoying SUN ; Qirui QU ; Xiqin YI ; Kun AI
Chinese Journal of Physical Medicine and Rehabilitation 2024;46(1):1-6
Objective:To observe any effect of exercise preconditioning on the levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in the brain tissue of rats after induced cerebral ischemia and reperfusion, and how it might promote angiogenesis.Methods:Thirty-six male Sprague-Dawley rats were randomly divided into a sham-operation group, a model group and an exercise preconditioning group, each of 12. After adaptive running training for 3 days, the exercise preconditioning group ran daily for 30 minutes at 15m/min for 14 days, while the other two groups did not exercise. Middle cerebral artery occlusion and reperfusion were then induced in the model and exercise preconditioning groups using the modified Zea-Longa suture method. Rats in the sham-operation group were only cut open to expose the right carotid artery. Right after the modeling, and again 24 hours later neurological deficit was evaluated using the Zea-Longa score and modified neurological severity scoring (mNSS). Infarct sizes were measured using 2, 3, 5-triphenyl tetrazolium chloride staining. Any morphological changes were noted using hematoxylin and eosin (HE) staining, and the expression of CD31 protein, hypoxia-inducible factor-1α and vascular endothelial growth factor in the ischemic cerebral cortex were quantified immunohistochemically.Results:Right after the modelling, compared with the sham-operation group, the average Zea-Longa scores of the model and exercise groups had increased significantly, but were not significantly different from each other. Twenty-four hours later the average Zea-Longa score, mNSS score and relative cerebral infarction area of the model group had increased significantly compared with the sham-operation group, while the exercise preconditioning group′s averages had decreased significantly. The HE staining showed that compared with the sham-operation group, pathological changes such as loose tissue, reduced number of nerve cells, nucleolysis, and vacuolization of the cerebral cortex on the ischemic side were found in the model group. Compared with the model group, the pathological changes in the exercise preconditioning group were less serious. The levels of CD31 protein, HIF-1α and VEGF in the ischemic cerebral cortexes of the model group had by then increased significantly. But compared with the model group, those levels had increased more in the exercise preconditioning group.Conclusion:Exercise preconditioning can effectively promote angiogenesis after cerebral ischemia and reduce chronic injury. That may be related to the activation of the HIF-1α and/or VEGF signaling pathways.
7.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
8.Not Available.
Yangqi QU ; Jingjing XU ; Tong ZHANG ; Qinjun CHEN ; Tao SUN ; Chen JIANG
Acta Pharmaceutica Sinica B 2024;14(1):170-189
Tumor vaccine is a promising strategy for cancer immunotherapy by introducing tumor antigens into the body to activate specific anti-tumor immune responses. Along with the technological breakthroughs in genetic engineering and delivery systems, messenger ribonucleic acid (mRNA) technology has achieved unprecedented development and application over the last few years, especially the emergency use authorizations of two mRNA vaccines during the COVID-19 pandemic, which has saved countless lives and makes the world witness the powerful efficacy of mRNA technology in vaccines. However, unlike infectious disease vaccines, which mainly induce humoral immunity, tumor vaccines also need to activate potent cellular immunity to control tumor growth, which creates a higher demand for mRNA delivery to the lymphatic organs and antigen-presenting cells (APCs). Here we review the existing bottlenecks of mRNA tumor vaccines and advanced nano-based strategies to overcome those challenges, as well as future considerations of mRNA tumor vaccines and their delivery systems.
9.Advances in therapeutic drug monitoring methods based on liquid chromatography-tandem mass spectrometry
Ziying LI ; Jie XIE ; Ziyu QU ; You JIANG ; Di ZHANG ; Songlin YU ; Xiaoli MA ; Ling QIU ; Xinhua DAI ; Xiang FANG ; Xiaoping YU
Chinese Journal of Laboratory Medicine 2024;47(3):332-340
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology has the characteristics of high specificity and high throughput, making it rapidly applied and developed in the field of clinical testing. Its application in the monitoring of therapeutic drugs can effectively improve the quantitative accuracy and sensitivity, and formulate a personalized and optimal dosing plan for patients. However, this technology still faces some challenges, and automation, quality control, and quantitative traceability will be the future development direction.
10.Ideas and Methods of Acupuncture for Guillain-Barré Syndrome based on the Core Principle of “To Treat Flaccidity, Select the Yangming (阳明) Channel only”
Huan LI ; Hailun JIANG ; Hao CHEN ; Hui QU ; Ruohan TANG ; Jie JI ; Yuzheng DU ; Qi ZHAO
Journal of Traditional Chinese Medicine 2024;65(4):362-367
This study explored the ideas and methods of acupuncture for Guillain-Barré Syndrome (GBS) with the core principle of “to treat flaccidity, select the yangming (阳明) channel only”. The main pathological mechanism of GBS is deficiency of qi and blood in the yangming channel, malnutrition of all sinews, diminished spleen and stomach function leading to the production of pathogenic damp-heat qi, which obstructs the meridians, and gradually affects the liver and kidneys, consuming essence and damaging blood. Concurrently, dysfunction of the dumai (督脉) pivotal mechanism and lack of moisture in sinews and vessels result in symptoms such as skin numbness, paralysis, and muscle wastage. In clinical diagnosis and treatment, a combination of syndrome and channel differentiation is taken. Treatment primarily focuses on acupoints of yangming channel, aiming to supplement qi and blood, and acupoints of du mai are combined to open the vessel and fill the marrow. Specific acupoints are selected based on syndrome differentiation, providing comprehensive regulation to promote harmonization of qi and blood, relieve meridians, and the smooth generation and circulation of whole body fluids. This, in turn, enhances the strength of muscles and bones, and fosters a robust and freely moving body.

Result Analysis
Print
Save
E-mail