1.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
2.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
3.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
4.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
5.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
6.Evaluation and Regulation of Medical Artificial Intelligence Applications in China.
Mao YOU ; Yue XIAO ; Han YAO ; Xue-Qing TIAN ; Li-Wei SHI ; Ying-Peng QIU
Chinese Medical Sciences Journal 2025;40(1):3-8
Amid the global wave of digital economy, China's medical artificial intelligence applications are rapidly advancing through technological innovation and policy support, while facing multifaceted evaluation and regulatory challenges. The dynamic algorithm evolution undermines the consistency of assessment criteria, multimodal systems lack unified evaluation metrics, and conflicts persist between data sharing and privacy protection. To address these issues, the China National Health Development Research Center has established a value assessment framework for artificial intelligence medical technologies, formulated the country's first technical guideline for clinical evaluation, and validated their practicality through scenario-based pilot studies. Furthermore, this paper proposes introducing a "regulatory sandbox" model to test technical compliance in controlled environments, thereby balancing innovation incentives with risk governance.
Artificial Intelligence/legislation & jurisprudence*
;
China
;
Humans
;
Algorithms
7.A Health Economic Evaluation of an Artificial Intelligence-assisted Prescription Review System in a Real-world Setting in China.
Di WU ; Ying Peng QIU ; Li Wei SHI ; Ke Jun LIU ; Xue Qing TIAN ; Ping REN ; Mao YOU ; Jun Rui PEI ; Wen Qi FU ; Yue XIAO
Biomedical and Environmental Sciences 2025;38(3):385-388
8.Progress on Wastewater-based Epidemiology in China: Implementation Challenges and Opportunities in Public Health.
Qiu da ZHENG ; Xia Lu LIN ; Ying Sheng HE ; Zhe WANG ; Peng DU ; Xi Qing LI ; Yuan REN ; De Gao WANG ; Lu Hong WEN ; Ze Yang ZHAO ; Jianfa GAO ; Phong K THAI
Biomedical and Environmental Sciences 2025;38(11):1354-1358
Wastewater-based epidemiology has emerged as a transformative surveillance tool for estimating substance consumption and monitoring disease prevalence, particularly during the COVID-19 pandemic. It enables the population-level monitoring of illicit drug use, pathogen prevalence, and environmental pollutant exposure. In this perspective, we summarize the key challenges specific to the Chinese context: (1) Sampling inconsistencies, necessitating standardized 24-hour composite protocols with high-frequency autosamplers (≤ 15 min/event) to improve the representativeness of samples; (2) Biomarker validation, requiring rigorous assessment of excretion profiles and in-sewer stability; (3) Analytical method disparities, demanding inter-laboratory proficiency testing and the development of automated pretreatment instruments; (4) Catchment population dynamics, reducing estimation uncertainties through mobile phone data, flow-based models, or hydrochemical parameters; and (5) Ethical and data management concerns, including privacy risks for small communities, mitigated through data de-identification and tiered reporting platforms. To address these challenges, we propose an integrated framework that features adaptive sampling networks, multi-scale wastewater sample banks, biomarker databases with multidimensional metadata, and intelligent data dashboards. In summary, wastewater-based epidemiology offers unparalleled scalability for equitable health surveillance and can improve the health of the entire population by providing timely and objective information to guide the development of targeted policies.
China/epidemiology*
;
Humans
;
Wastewater/analysis*
;
COVID-19/epidemiology*
;
Public Health
;
Wastewater-Based Epidemiological Monitoring
;
SARS-CoV-2
9.Infiltration and immunosuppressive function of tumor-associated B cells in gastric cancer patients
Yuxian LI ; Zhenquan DUAN ; Ying WANG ; Xueling TAN ; Xiaohong YU ; Yuanyuan ZHANG ; Baohang ZHU ; Yuan QIU ; Liusheng PENG ; Quanming ZOU
Journal of Army Medical University 2024;46(9):1034-1040
Objective To investigate the distribution of B cells in both tumor and non-tumor tissues of gastric cancer patients,analyze their phenotypic characteristics and explore the impact on T cell proliferation.Methods Immunohistochemical staining was utilized to detect the expression of B cell surface marker CD 19 in tumor and non-tumor tissues from 33 gastric cancer patients.The expression levels of chemokine receptors and immunoglobulin molecules on B cells in both tumor and non-tumor tissues were measured using flow cytometry.Chemotaxis experiments were conducted to examine the role of the CXCL12-CXCR4 axis in B cell chemotaxis.B cells isolated and purified from both tissue types were co-cultured with autologous peripheral T cells to assess their effect on T cell proliferation.Results There were significantly more B cells infiltrated in tumor tissues than those infitrated in the non-tumor tissues of gastric cancer patients(P<0.01),and CXCR4 was highly expressed on tumor-infiltrating B cells compared with B cells derived from non-tumor tissues(P<0.05).The Cancer Genome Atlas(TCGA)analysis indicated that the expression level of CXCL12 in tumor tissues was positively correlated with the expression level of CD19 in gastric cancer patients(r=0.15,P<0.01).And the expression level of CXCL12 in tumor tissues of the gastric cancer patients was also positively correlated with the number of B cells infiltrated in tumor tissues.Chemotaxis experiments confirmed that the CXCL12-CXCR4 axis was involved in promoting B cell chemotaxis(P<0.05).Although B cells in tumor and non-tumor tissues had similar levels of IgM,IgG,and IgA expression,tumor-infiltrating B cells significantly inhibited the proliferation of T cells when compared with B cells derived from non-tumor tissues(P<0.01).Conclusion There are more B cells infiltrated in gastric cancer tissues,which may be recruited to tumor tissues through the CXCL12-CXCR4 axis,and then inhibit T cell proliferation to promote the progression of gastric cancer.
10.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.

Result Analysis
Print
Save
E-mail