1.Skin pharmacokinetics of inositol nicotinate in heparin sodium inositol nicotinate cream
Yaling CUI ; Qiong WU ; Liangyu MA ; Bei HU ; Dong YAO ; Zihua XU
Journal of Pharmaceutical Practice and Service 2025;43(1):6-9
Objective To establish an HPLC method to determine the concentration of inositol nicotinate(IN) in rat skin, and study the pharmacokinetic characteristics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats. Methods HPLC method was used to establish a simple and rapid analytical method for the determination of IN concentration in the skin of rats at different time points after administration. The established method was used to study the pharmacokinetics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats, and the pharmacokinetic parameters were fitted with DAS software. Results The linearity of the analytical method was good in the concentration range of 0.25-20 μg/ml, the quantitative limit was 0.25 μg/ml, and the average recovery rate was 96.18%. The pharmacokinetic parameters of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats were as follows: t1/2 was (4.555±2.054) h, Tmax was (6±0)h, Cmax was (16.929±2.153)mg/L, AUC0−t was (150.665±16.568) mg·h /L ,AUC0−∞ was (161.074±23.917) mg·h /L, MRT(0−t) was (9.044±0.618)h, MRT(0−∞) was (10.444±1.91) h, CLz/F was (0.19±0.03) L/(h·kg), and Vz/F was (1.19±0.437) L/(h·kg). Conclusion IN could quickly penetrate the skin and accumulate in the skin for a long time, which was beneficial to the pharmacological action of drugs on the lesion site for a long time. The method is simple, rapid, specific and reproducible, which could be successfully applied to the pharmacokinetic study of IN after transdermal administration in rats.
2.Research status and advances in immunotherapy for chronic myeloid leukemia
Mengmeng WANG ; Jingyun MA ; Boyu XIONG ; Zhuowen DAI ; Yueyue PAN ; Qiong WANG
Chinese Journal of Blood Transfusion 2025;38(5):739-746
Chronic myeloid leukemia (CML) is a malignant hematologic disorder caused by abnormal proliferation of hematopoietic stem cells. In recent years, while the application of tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis of CML patients through in-depth exploration of pathogenesis of CML and advancements in targeted therapies, some patients still face challenges including drug resistance, disease relapse, and failure to achieve treatment-free remission. Imunotherapy, as a complementary or alternative strategy, holds significant potential for overcoming these limitations, and has gradually emerged as a critical research focus in CML treatment. This review aims to summarize the current research status and latest advances in immunotherapy for CML.
3.Knowledge map and visualization analysis of pulmonary nodule/early-stage lung cancer prediction models
Yifeng REN ; Qiong MA ; Hua JIANG ; Xi FU ; Xueke LI ; Wei SHI ; Fengming YOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):100-107
Objective To reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. Methods Publications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. Results A marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. Conclusion Over the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
4.Recognition of breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine syndrome elements based on electronic nose combined with machine learning: An observational study in a single center
Shiyan TAN ; Qiong ZENG ; Hongxia XIANG ; Qian WANG ; Xi FU ; Jiawei HE ; Liting YOU ; Qiong MA ; Fengming YOU ; Yifeng REN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):185-193
Objective To explore the recognition capabilities of electronic nose combined with machine learning in identifying the breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine (TCM) syndrome elements. Methods The study design was a single-center observational study. General data and four diagnostic information were collected from 108 patients with pulmonary nodules admitted to the Department of Cardiothoracic Surgery of Hospital of Chengdu University of TCM from April 2023 to March 2024. The patients' TCM disease location and nature distribution characteristics were analyzed using the syndrome differentiation method. The Cyranose 320 electronic nose was used to collect the odor profiles of oral exhalation, and five machine learning algorithms including random forest (RF), K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGBoost) were employed to identify the exhaled breath profiles of benign and malignant pulmonary nodules and different TCM syndromes. Results (1) The common disease locations in pulmonary nodules were ranked in descending order as liver, lung, and kidney; the common disease natures were ranked in descending order as Yin deficiency, phlegm, dampness, Qi stagnation, and blood deficiency. (2) The electronic nose combined with the RF algorithm had the best efficacy in identifying the exhaled breath profiles of benign and malignant pulmonary nodules, with an AUC of 0.91, accuracy of 86.36%, specificity of 75.00%, and sensitivity of 92.85%. (3) The electronic nose combined with RF, LR, or XGBoost algorithms could effectively identify the different TCM disease locations and natures of pulmonary nodules, with classification accuracy, specificity, and sensitivity generally exceeding 80.00%.Conclusion Electronic nose combined with machine learning not only has the potential capabilities to differentiate the benign and malignant pulmonary nodules, but also provides new technologies and methods for the objective diagnosis of TCM syndromes in pulmonary nodules.
5.Study on the correlation between the distribution of traditional Chinese medicine syndrome elements and salivary microbiota in patients with pulmonary nodules
Hongxia XIANG ; iawei HE ; Shiyan TAN ; Liting YOU ; Xi FU ; Fengming YOU ; Wei SHI ; Qiong MA ; Yifeng REN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):608-618
Objective To analyze the differences in distribution of traditional Chinese medicine (TCM) syndrome elements and salivary microbiota between the individuals with pulmonary nodules and those without, and to explore the potential correlation between the distribution of TCM syndrome elements and salivary microbiota in patients with pulmonary nodules. Methods We retrospectively recruited 173 patients with pulmonary nodules (PN) and 40 healthy controls (HC). The four diagnostic information was collected from all participants, and syndrome differentiation method was used to analyze the distribution of TCM syndrome elements in both groups. Saliva samples were obtained from the subjects for 16S rRNA high-throughput sequencing to obtain differential microbiota and to explore the correlation between TCM syndrome elements and salivary microbiota in the evolution of the pulmonary nodule disease. Results The study found that in the PN group, the primary TCM syndrome elements related to disease location were the lung and liver, and the primary TCM syndrome elements related to disease nature were yin deficiency and phlegm. In the HC group, the primary TCM syndrome elements related to disease location were the lung and spleen, and the primary TCM syndrome elements related to disease nature were dampness and qi deficiency. There were differences between the two groups in the distribution of TCM syndrome elements related to disease location (lung, liver, kidney, exterior, heart) and disease nature (yin deficiency, phlegm, qi stagnation, qi deficiency, dampness, blood deficiency, heat, blood stasis) (P<0.05). The species abundance of the salivary microbiota was higher in the PN group than that in the HC group (P<0.05), and there was significant difference in community composition between the two groups (P<0.05). Correlation analysis using multiple methods, including Mantel test network heatmap analysis and Spearman correlation analysis and so on, the results showed that in the PN group, Prevotella and Porphyromonas were positively correlated with disease location in the lung, and Porphyromonas and Granulicatella were positively correlated with disease nature in yin deficiency (P<0.05). Conclusion The study concludes that there are notable differences in the distribution of TCM syndrome elements and the species abundance and composition of salivary microbiota between the patients with pulmonary nodules and the healthy individuals. The distinct external syndrome manifestations in patients with pulmonary nodules, compared to healthy individuals, may be a cascade event triggered by changes in the salivary microbiota. The dual correlation of Porphyromonas with both disease location and nature suggests that changes in its abundance may serve as an objective indicator for the improvement of symptoms in patients with yin deficiency-type pulmonary nodules.
6.Construction and evaluation of a "disease-syndrome combination" prediction model for pulmonary nodules based on oral microbiomics
Yifeng REN ; Shiyan TAN ; Qiong MA ; Qian WANG ; Liting YOU ; Wei SHI ; Chuan ZHENG ; Jiawei HE ; Fengming YOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1105-1114
Objective To construct a "disease-syndrome combination" mathematical representation model for pulmonary nodules based on oral microbiome data, utilizing a multimodal data algorithm framework centered on dynamic systems theory. Furthermore, to compare predictive models under various algorithmic frameworks and validate the efficacy of the optimal model in predicting the presence of pulmonary nodules. Methods A total of 213 subjects were prospectively enrolled from July 2022 to March 2023 at the Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Cancer Hospital, and the Chengdu Integrated Traditional Chinese and Western Medicine Hospital. This cohort included 173 patients with pulmonary nodules and 40 healthy subjects. A novel multimodal data algorithm framework centered on dynamic systems theory, termed VAEGANTF (Variational Auto Encoder-Generative Adversarial Network-Transformer), was proposed. Subsequently, based on a multi-dimensional integrated dataset of “clinical features-syndrome elements-microorganisms”, all subjects were divided into training (70%) and testing (30%) sets for model construction and efficacy testing, respectively. Using pulmonary nodules as dependent variables, and combining candidate markers such as clinical features, lesion location, disease nature, and microbial genera, the independent variables were screened based on variable importance ranking after identifying and addressing multicollinearity. Missing values were then imputed, and data were standardized. Eight machine learning algorithms were then employed to construct pulmonary nodule risk prediction models: random forest, least absolute shrinkage and selection operator (LASSO) regression, support vector machine, multilayer perceptron, eXtreme Gradient Boosting (XGBoost), VAE-ViT (Vision Transformer), GAN-ViT, and VAEGANTF. K-fold cross-validation was used for model parameter tuning and optimization. The efficacy of the eight predictive models was evaluated using confusion matrices and receiver operating characteristic (ROC) curves, and the optimal model was selected. Finally, goodness-of-fit testing and decision curve analysis (DCA) were performed to evaluate the optimal model. Results There were no statistically significant differences between the two groups in demographic characteristics such as age and sex. The 213 subjects were randomly divided into training and testing sets (7 : 3), and prediction models were constructed using the eight machine learning algorithms. After excluding potential problems such as multicollinearity, a total of 301 clinical feature information, syndrome elements, and microbial genera markers were included for model construction. The area under the curve (AUC) values of the random forest, LASSO regression, support vector machine, multilayer perceptron, and VAE-ViT models did not reach 0.85, indicating poor efficacy. The AUC values of the XGBoost, GAN-ViT, and VAEGANTF models all reached above 0.85, with the VAEGANTF model exhibiting the highest AUC value (AUC=0.923). Goodness-of-fit testing indicated good calibration ability of the VAEGANTF model, and decision curve analysis showed a high degree of clinical benefit. The nomogram results showed that age, sex, heart, lung, Qixu, blood stasis, dampness, Porphyromonas genus, Granulicatella genus, Neisseria genus, Haemophilus genus, and Actinobacillus genus could be used as predictors. Conclusion The “disease-syndrome combination” risk prediction model for pulmonary nodules based on the VAEGANTF algorithm framework, which incorporates multi-dimensional data features of “clinical features-syndrome elements-microorganisms”, demonstrates better performance compared to other machine learning algorithms and has certain reference value for early non-invasive diagnosis of pulmonary nodules.
7.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
8.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
9.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
10.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail