1.GABAergic Retinal Ganglion Cells Projecting to the Superior Colliculus Mediate the Looming-Evoked Flight Response.
Man YUAN ; Gao TAN ; Danrui CAI ; Xue LUO ; Kejiong SHEN ; Qinqin DENG ; Xinlan LEI ; Wen-Bo ZENG ; Min-Hua LUO ; Lu HUANG ; Chaoran REN ; Yin SHEN
Neuroscience Bulletin 2024;40(12):1886-1900
The looming stimulus-evoked flight response to approaching predators is a defensive behavior in most animals. However, how looming stimuli are detected in the retina and transmitted to the brain remains unclear. Here, we report that a group of GABAergic retinal ganglion cells (RGCs) projecting to the superior colliculus (SC) transmit looming signals from the retina to the brain, mediating the looming-evoked flight behavior by releasing GABA. GAD2-Cre and vGAT-Cre transgenic mice were used in combination with Cre-activated anterograde or retrograde tracer viruses to map the inputs to specific GABAergic RGC circuits. Optogenetic technology was used to assess the function of SC-projecting GABAergic RGCs (scpgRGCs) in the SC. FDIO-DTA (Flp-dependent Double-Floxed Inverted Open reading frame-Diphtheria toxin) combined with the FLP (Florfenicol, Lincomycin & Prednisolone) approach was used to ablate or silence scpgRGCs. In the mouse retina, GABAergic RGCs project to different brain areas, including the SC. ScpgRGCs are monosynaptically connected to parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of scpgRGCs triggers GABA-mediated inhibition in SC neurons. Ablation or silencing of scpgRGCs compromises looming-evoked flight responses without affecting image-forming functions. Our study reveals that scpgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.
Animals
;
Superior Colliculi/physiology*
;
Retinal Ganglion Cells/physiology*
;
GABAergic Neurons/physiology*
;
Mice, Transgenic
;
Mice
;
Optogenetics
;
Visual Pathways/physiology*
;
Mice, Inbred C57BL
;
Photic Stimulation/methods*
;
gamma-Aminobutyric Acid/metabolism*
;
Male
2.Research progress on multiplexed point-of-care testing technology for the diagnosis of infectious diseases
Fumin CHEN ; Huimin LI ; Yi XIE ; Leshan XIU ; Qinqin HU ; Kun YIN ; Xiaokui GUO
Chinese Journal of Laboratory Medicine 2023;46(9):964-970
Accurate and rapid diagnosis of infectious diseases can effectively prevent their spread and promptly curb the epidemic hazards. Multiplexed point-of-care testing (x-POCT) technology can effectively avoid misdiagnosis caused by the detection of one single target and achieve rapid screening and timely control of multiple infectious diseases. Research progress and the latest applications of x-POCT including x-POCT assay methods for different targets in the diagnosis of infectious diseases and their pathogens are summarized in this review. The paper-based, microfluidic chip-based, and microdroplet-based device platforms of x-POCT, and eventually the challenges and future perspectives of x-POCT, especially progress on the effective infectious disease surveillance network establishment under One Health concept are highlighted.
3.Effects of physical environments on nucleation of protein crystals: a review.
Ruiqing CHEN ; Jun LIU ; Qinqin LU ; Yongming LIU ; Dachuan YIN
Chinese Journal of Biotechnology 2011;27(1):9-17
This paper reviews the effects of physical environments (including light, electric field, ultrasound, magnetic field, microgravity, temperature, mechanical vibration, and heterogeneous nucleation interface) on protein crystal nucleation. The research results are summarized and the possible mechanisms of the effects are discussed. In the end of this review, the application prospects of these physical environments (including coupled environments) in protein crystallization are presented.
Crystallization
;
Crystallography, X-Ray
;
Electromagnetic Fields
;
Environment
;
Light
;
Protein Conformation
;
Proteins
;
chemistry
;
Temperature
4.The progress of research on low-frequency sonophoresis and its applications.
Xi TU ; Qinqin YIN ; Wensheng ZHANG ; Hua HUANG
Journal of Biomedical Engineering 2008;25(6):1474-1478
Low-frequency ultrasound can increase the transdermal delivery of many drugs, including macromolecular drugs. The main mechanism is ultrasonic cavitation. Most researchers pointed out that it could change the form-structure of stratum corneum keratinocytes and, in this way, it can improve the permeability of skin. Low-frequency sonophoresis has been in use for in-vitro experiments and in-vivo animal experiments, and so far, both small-molecules transdermal delivery and macromolecules transdermal delivery have been successfully performed in many experiments. However, there are few reports about the real low-frequency sonophoresis for clinical treatment. A large number of clinical trials are necessary to confirm its safety and practicality. Once its safety is confirmed and the suitable low-frequency sonophoresis devices are developed successfully, Low-frequency Sonophoresis will come to be a safe, effective, controllable, and economic new delivery method.
Administration, Cutaneous
;
Animals
;
Humans
;
Skin
;
diagnostic imaging
;
metabolism
;
Skin Absorption
;
radiation effects
;
Ultrasonography

Result Analysis
Print
Save
E-mail