1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the
3.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
4.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
5.N-butyl-9H-pyrimido4,5-bindole-2-carboxamide inhibits macrophage foaming and pyroptosis via NLRP3/caspase-1
Zhi-Yun SHU ; Zi-Xu HUYAN ; Wen-Qing ZHANG ; Shi-Shun XIE ; Hong-Yuan CHENG ; Guo-Xing XU ; Xiang-Jun LI
Chinese Pharmacological Bulletin 2024;40(6):1035-1041
Aim To design the pyrimidoindole deriva-tive N-butyl-9H-pyrimido[4,5-b]indole-2-carboxamide(BFPI)and synthesize it to investigate whether it in-hibits macrophage pyroptosis and foaming effects through the NLRP3/Caspase-1 pathway.Methods BFPI was synthesized using 2,4,6-triethoxycarbonyl-l,3,5-triazine and 2-aminoindole as starting materials and structurally characterized by 1H NMR,13C NMR,and ESI-MS.The in vitro cultured mouse monocyte macro-phage cell line RAW264.7 was divided into blank,model(PA)and therapeutic(BFPI)groups,and the cells in each group were treated with the corresponding culture medium for 24 h.The proliferative viability was detected by MTT assay,and the formation of intracel-lular lipid droplets was detected by oil red O staining,and NLRP3 was detected by Western-blot and RT-qPCR,caspase-1 and MCP-1 mRNA and protein ex-pression levels by Western blot and RT-qPCR.Results Compared with the blank group,the proliferation vi-ability of cells in the model group significantly de-creased and the formation of lipid droplets significantly increased;compared with the model group,the prolif-eration viability of cells in the treatment group signifi-cantly increased and the formation of lipid droplets sig-nificantly decreased,and the differences were statisti-cally significant(P<0.01);compared with the blank group,the cellular NLRP3,caspase-1 and MCP-1 mR-NA and protein expression levels of cells in the model group significantly increased;compared with the model group,the expression levels of the above indexes of the cells in the treatment group significantly decreased,and the difference was statistically significant(P<0.01).Conclusions BFPI contributes to delaying macrophage-derived foam cell formation during athero-genesis by inhibiting macrophage NLRP3,caspase-1,and MCP-1 expression and thereby promoting their pro-liferation and inhibiting lipid phagocytosis.
6.LncRNA UNC5B-AS1 regulates malignant biological behavior of osteosarcoma cells through NF-κB signaling pathways
Qing-Lin YANG ; Huai-Bin ZHANG ; Zhi-Jie LAN ; Qing-Qing QIN ; Yi-Kun WANG ; Yong-Ping WANG
Chinese Pharmacological Bulletin 2024;40(6):1082-1088
Aim To investigate the possible mecha-nism of UNC5B-AS1 in regulating the malignant biolog-ical behavior of osteosarcoma cells.Methods RT-qPCR was used to detect the expression of UNC5B-AS1 in osteosarcoma cells MG63,osteosarcoma cells U2OS and osteoblast cells hFOB1.19.After overexpression and knockdown of UNC5B-AS1 in osteosarcoma cells,the proliferation,migration and apoptosis of osteosarco-ma cells were detected by CCK-8 assay,Transwell as-say and flow cytometry,respectively.At the same time,RT-qPCR and Western blot were used to detect the effects of UNC5B-AS1 overexpression and knock-down on the mRNA and protein expression of key fac-tors in the NF-κB signaling pathway.Results Com-pared with normal osteoblast hFOB1.19,UNC5B-AS1 expression was differentially increased in osteosarcoma cells MG63 and U2OS.Overexpression of UNC5B-AS1 significantly promoted the proliferation of osteosarcoma cells and significantly increased the migration ability of osteosarcoma cells,while the apoptosis rate markedly decreased,and NF-κB signaling pathway-related mR-NA and protein expressions apparently increased.Knockdown of UNC5B-AS1 evidently inhibited the pro-liferation of osteosarcoma cells and significantly re-duced the migration ability of osteosarcoma cells,while the apoptosis rate markedly increased,the NF-κB sig-naling pathway related mRNA and protein expression significantly reduced.Conclusions lncRNA UNC5B-AS1 is highly expressed in osteosarcoma cells,which may affect the malignant biological behavior of osteo-sarcoma cells by activating the NF-κB signaling path-way.
7.Effects of emetine on insulin secretion in rat islets through GLP-1R
Huan XUE ; Zhi-Hong LU ; Bin WANG ; Si-Ting YU ; Xi ZHANG ; Bin HU ; Qing-Xuan ZENG ; Yi ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1267-1272
Aim To study the effect of emetine on in-sulin secretion through glucagon-like peptide-1 receptor(GLP-1R).Methods Isolating rat islets were used to carry out insulin secretion experiment.Islets were incubated with different concentrations of emetine(2,10,50 μmol·L-1),different concentrations of glu-cose solution(2.8,11.1,16.7 mmol·L-1)or spe-cific GLP-1R antagonist Exendin(9-39).The amount of insulin secretion in the supernatant of each group was determined by an enzyme-linked radioimmunoas-say.Small molecule compounds were docked to GLP-1R(PDB code:5NX2)using SYBYL-X2.0 software.Results Emetine could promote insulin secretion in high glucose(11.1 mmol·L-1)in a dose-dependent manner.In low glucose(2.8 mmol·L-1),insulin secretion did not change after intervention of emetine.But in high glucose(11.1,16.7 mmol·L-1),insu-lin secretion significantly increased under the treatment of emetine in a glucose-dependent manner.The doc-king score of emetine and GLP-1R was Total Score=6.82,C Score=5,indicating that emetine had a good binding affinity with GLP-1R.Using Exendin(9-39)to block GLP-1R,the insulinotropic effect of emetine was reduced.Conclusion Emetine could promote in-sulin secretion,which is related to the activation of GLP-1R.
8.The protective effect of icaritin on D-galactose-induced TM4 cell junctional function damage
Zhi-Li YAO ; Hai-Xia ZHAO ; Xiao-Yu MA ; Guo-Qing FU ; Jie WU ; Lai-Xin SONG ; Chang-Cheng ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1634-1641
Aim To investigate the mechanism of icar-itin(ICT)on D-galactose(D-gal)-induced TM4 ser-toli cell junctional function damage in vitro.Methods TM4 cells were divided into the normal control group and D-gal treatment group with different concentra-tions.The expression changes of TM 4 cell junction function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signaling pathway-related proteins(ERα,FAK and pY397-FAK)were detected by Western blot.The concentration of ICT was screened by MTT method.TM4 cells were divided into normal control group,D-gal treatment group,and D-gal treatment+different concentrations of ICT group.The expression levels of the above proteins were detected by Western blot.Molecular docking was used to study the interaction between ERα and ICT,meanwhile predict the affinity between them.Finally,TM4 cells were di-vided into normal control group,D-gal treatment group,ERα inhibitor group,D-gal+ICT group,and ERα inhibitor+ICT group.The expression levels of the above proteins were detected by Western blot.Re-sults Compared with the normal control group,the ex-pression of junctional function-related proteins(ZO-1,Occludin,β-catenin and Cx43)and ERα/FAK signa-ling pathway-related proteins(ERα,FAK and pY397-FAK)were significantly down-regulated.After treat-ment with ICT,the expression of above proteins were significantly up-regulated.The docking results of ERα and ICT molecules revealed the formation of two hydro-gen bonds between Asp351 amino acid residue of ERα and ICT,with bond distances measuring 3.4? and 2.4?.Additionally,the docking binding energy be-tween them was found to be lower than-7 kcal·mol-1.After TM4 cells were treated with ERα inhibi-tor,the expression of above proteins and ERα/FAK signaling pathway-related proteins were significantly down-regulated,while the expression levels of the a-bove proteins did not change significantly after being given ICT protected group.Conclusions D-gal can cause damage to the junctional function of TM4 cells,and ICT can improve this damage,which may be related to the up-regulation of ERα/FAK signaling pathway.
9.Proanthocyanin B2 inhibits oxidative stress and alleviates H2O2 induced damage to human oligodendrocytes through NRF2/HO-1/xCT/GPX4 axis
Jian LIU ; Ying CHEN ; Ya-Jie LIANG ; Meng PU ; Zi-Wei ZHANG ; Lu-Lu ZHENG ; Zhi CHAI ; Ying XIAO ; Cun-Gen MA ; Qing WANG
Chinese Pharmacological Bulletin 2024;40(9):1735-1743
Aim To explore the protective effect of an-thocyanin B2(PCB2)on hydrogen peroxide(H2O2)induced oxidative damage and apoptosis in human oli-godendrocytes(MO3.13)and the underlying mecha-nism.Methods The optimal concentration of H2O2 and PCB2 for action was screened,and divided into normal group,PCB2 group(100 mg·L-1 PCB2 treat-ment for 24 hours),H2 O2 model group(500 μmol·L-1 H2O2 treatment for 24 hours),and H2O2+PCB2 group(500 μmol·L-1 H2O2 and 100 mg·L-1 PCB2 co-treated for 24 hours).FRAP method was used to detect the antioxidant capacity of PCB2;CCK-8 meth-od was used to detect the survival rate of cells in each group,while LDH method was used to assess cytotoxic-ity.Microenzyme-linked immunosorbent assay and ELISA were used to examine the levels of LDH,NO,H2O2,as well as the activities of CAT and SOD in each group of cells.Immunofluorescence and Western blot were used to detect the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4 in each group of cells.FerroOrange fluorescent probe was used to de-tect the intracellular content of ferrous ions(Fe2+).Results H2O2 could induce MO3.13 oxidative dam-age and lead to cell ferroptosis,while PCB2 could alle-viate MO3.13 oxidative damage and ferroptosis.Com-pared with the H2O2 model group,PCB2 intervention could significantly increase LDH content in MO3.13,reduce NO and H2O2 content,and improve SOD and CAT activity,and up-regulate the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4.Conclusion PCB2 can enhance cellular antioxidant capacity and alleviate H2O2 induced MO3.13 oxidative damage through the NRF2/HO-1/xCT/GPX4 axis.
10.Clinical efficacy of endoscopic Delta large channel unilateral laminotomy for bilateral decompression in treatment of lumbar spinal stenosis
Zan YUAN ; Xin-Ning HE ; Zhi-Yong DU ; Shui-Qing ZHANG ; Hao-Hong QI
Journal of Regional Anatomy and Operative Surgery 2024;33(6):517-520
Objective To investigate the efficacy of endoscopic Delta large channel unilateral laminotomy for bilateral decompression(ULBD)in the treatment of lumbar spinal stenosis(LSS),and the postoperative complications was analyzed.Methods A total of 100 patients with LSS in our hospital from January 2021 to February 2023 were selected and divided into the control group and the observation group according to random number table method,with 50 cases in each group.Patient in the control group were treated with bilateral or unilateral decompression through the median incision adjacent to the lateral spinous process,and patients in the observation group were treated with endoscopic Delta large channel ULBD.The visual analogue scale(VAS)scores,Japanese Orthopaedic Association(JOA)scores,Oswestry disability index(ODI)scores before surgery and 1 month,3 months,6 months after surgery,as well as clinical efficacy and incidence of postoperative complications of patients between the two groups were compared.Results Compared with preoperative results,the VAS scores of leg pain and low back pain and ODI scores of patients 1 month,3 months and 6 months after surgery in both groups were significantly lower(P<0.05),and JOA scores were significantly higher(P<0.05).Moreover,compared with the control group,the VAS scores of leg pain and low back pain and ODI scores of patients 1 month,3 months and 6 months after surgery in the observation group were lower(P<0.05),the JOA scores were higher(P<0.05).The total effective rate in the observation group was 98.00%,which was higher than 72.00%in the control group(P<0.05).The incidence of postoperative complications in the observation group was 4.00%,which was lower than 24.00%in the control group(P<0.05).Conclusion Endoscopic Delta large channel ULBD in the treatment of LSS can effectively reduce postopera-tive leg pain and low back pain,improve lumbar function,improve clinical therapeutic effect,and reduce postoperative complications.

Result Analysis
Print
Save
E-mail