1.Clinical Efficacy and Mechanism of Bupi Qingfei Prescription in Treating Stable Bronchiectasis
Zi YANG ; Guangsen LI ; Bing WANG ; Bo XU ; Jianxin WANG ; Sheng CAO ; Xinyan CHEN ; Xia SHI ; Qing MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):162-169
ObjectiveTo explore the clinical efficacy and mechanism of Bupi Qingfei prescription (BPQF) in treating stable bronchiectasis in the patients with syndromes of lung-spleen Qi deficiency and phlegm-heat accumulation in the lungs. MethodsA randomized, double-blind, placebo-controlled trial was conducted. Patients were randomized into BPQF and placebo control (PC) groups. On the basis of conventional Western medicine treatment, the BPQF granules and placebo were respectively administered at 10 g each time, twice a day, for a course of 24 weeks. The TCM symptom scores, Quality of Life Questionnaire for Bronchiectasis (QOL-B) scores, lung function indicators, T lymphocyte subsets, level of inflammatory factors in the sputum, level of neutrophil elastase (NE) in the sputum, and occurrence of adverse reactions were observed before and after treatment in the two groups. ResultsA total of 64 patients completed the study, encompassing 32 in the BPQF group and 32 in the PC group. After treatment, the BPQF group showed decreased TCM symptom scores (P<0.01), increased QOL-B scores (P<0.01), and declined levels of tumor necrosis factor (TNF)-α and NE (P<0.05, P<0.01). The PC group showed decreased TCM symptom (except spleen deficiency) scores (P<0.01), increased the QOL-B health cognition and respiratory symptom domain scores (P<0.05, P<0.01), and a declined TNF-α level (P<0.01). Moreover, the BPQF group had lower TCM symptom (except chest tightness) scores (P<0.05, P<0.01), higher QOL-B (except treatment burden) scores (P<0.05, P<0.01), and lower levels of interleukin-6 and TNF-α (P<0.05) than the PC group. Neither group showed serious adverse reactions during the treatment process. ConclusionBPQF can ameliorate the clinical symptoms of stable bronchiectasis patients who have lung-spleen Qi deficiency or phlegm-heat accumulation in the lungs by regulating the immune balance and inhibiting airway inflammatory responses.
2.Interpretation of neoadjuvant and adjuvant treatments for early stage resectable non-small cell lung cancer: Consensus recommendations from the International Association for the Study of Lung Cancer
Zhuokun HE ; Ning LI ; Qing GENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):291-299
With the publication of several phase Ⅱ and Ⅲ clinical studies, the multidisciplinary diagnostic and therapeutic strategies for early resectable non-small cell lung cancer (rNSCLC) are rapidly evolving. These studies have elucidated the significant effects of neoadjuvant and adjuvant therapies on improving the prognosis of rNSCLC patients, while also highlighting the urgent need to revise and refine corresponding treatment protocols and clinical pathways. In response, the International Association for the Study of Lung Cancer has assembled a diverse, multidisciplinary international expert panel to evaluate current clinical trials related to rNSCLC and to provide diagnostic, staging, and treatment recommendations for rNSCLC patients in accordance with the 8th edition of the AJCC-UICC staging system. The consensus recommendations titled "Neoadjuvant and adjuvant treatments for early stage resectable non-small cell lung cancer: Consensus recommendations from the International Associationfor the Study of Lung Cancer" outline 20 recommendations, 19 of which received over 85% agreement from the experts. The recommendations indicate that early rNSCLC patients should undergo evaluation by a multidisciplinary team and complete necessary imaging studies. For stage Ⅱ patients, consideration should be given to either adjuvant therapy following surgery or direct neoadjuvant/perioperative treatment, while stage Ⅲ patients are recommended to receive neoadjuvant chemoimmunotherapy followed by surgery. Postoperatively, adjuvant immunotherapy should be considered based on the expression levels of programmed cell death ligand 1, along with testing for other oncogenic driver mutations. For patients with epidermal growth factor receptor or anaplastic lymphoma kinase mutations sensitive to tyrosine kinase inhibitors, corresponding adjuvant targeted therapy is recommended. These recommendations aim to provide personalized and precise treatment strategies for early rNSCLC patients to enhance the efficacy of neoadjuvant and adjuvant therapies. This article provides an in-depth interpretation of these consensus recommendations.
3.Application of single-cell RNA sequencing technology in Parkinson's disease
Ziyu LIU ; Dandan GENG ; Runjiao ZHANG ; Qing LIU ; Yibo LI ; Hongfang WANG ; Wenmeng XIE ; Wenyu WANG ; Jiaxin HAO ; Lei WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):193-201
BACKGROUND:Parkinson's disease has the main pathological changes in the midbrain,especially in the dense substantia nigra,leading to impaired motor and non-motor function in patients.At present,research is limited by cellular heterogeneity,and its pathogenesis still needs to be further elucidated.In recent years,single-cell RNA sequencing(scRNA-seq)has gradually been applied in neurodegenerative diseases,which is of great significance for understanding intercellular heterogeneity,disease development mechanisms,and treatment strategies. OBJECTIVE:To review the research progress of scRNA-seq technology applied to Parkinson's disease in recent years,providing a theoretical basis for the application of scRNA-seq in the treatment and diagnosis of Parkinson's disease. METHODS:The first author used a computer system to search for relevant literature in the CNKI,WanFang,PubMed,and Web of Science databases,with the Chinese search terms"single-cell RNA sequencing,Parkinson's disease,cell heterogeneity,cell subtypes,dopaminergic neurons,glial cells"and English search terms"single-cell RNA seq,Parkinson disease,heterogenicity,subtypes,dopaminergic neurons,glial cells."71 articles were ultimately included for review and analysis. RESULTS AND CONCLUSION:(1)scRNA-seq is a high-throughput experimental technique that utilizes RNA sequencing at the single-cell level to quantify gene expression profiles in specific cell populations,revealing cellular mysteries at the molecular level.Compared with traditional sequencing techniques,scRNA-seq technology is used to reveal the diversity of cell types and changes in specific gene expression in complex tissues under various physiological and pathological conditions through automatic clustering analysis of cell transcriptome.(2)By using scRNA-seq,the development process of dopaminergic neurons and the unique functional characteristics of various cell subtypes are elucidated,in order to better understand potential therapeutic molecular targets.(3)The use of scRNA-seq analysis has improved our understanding of the response of Parkinson's disease glial cells,enabling us to comprehensively map and characterize different cell type populations,identify specific glial cell subpopulations related to neurodegeneration,and draw valuable single cell maps as reference data for future research.(4)The application of scRNA-seq to detect embryonic mice and stem cells will help improve the in vitro differentiation protocol and quality control of cell therapy,as well as evaluate the overall cell quality and developmental stage of dopaminergic neurons derived from stem cells.
4.Mechanical stability of intertrochanteric fracture of femur with different internal fixation systems
Xi CHEN ; Tao TANG ; Tongbing CHEN ; Qing LI ; Wen ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1783-1788
BACKGROUND:Intertrochanteric fracture of femur has various fracture types and fixation methods,and the mechanical stability of each fixation system is quite different.It is of scientific clinical significance to use finite element analysis method to carry out biomechanical research on various fixation systems. OBJECTIVE:To compare and analyze the mechanical stability of various internal fixations applied to femoral intertrochanteric fracture A031-A2.1 by finite element method. METHODS:Based on the validated finite element model of femur(Intact),the model was cut and made into A031-A2.1 intertrochanteric fracture of femur.Different internal fixation systems were implanted by simulating clinical operation methods,and fixation models of proximal femoral nail antirotation,dynamic hip screw,percutaneous compression plate and proximal femoral locking plate were established respectively.All nodes under the distal femur of the four groups of models were constrained,and compression loads of 700,1 400 and 2 100 N were applied to the femoral head.Von Mises stress distribution and compression stiffness of each group of models were observed through calculation and analysis,and mechanical stability of each group was compared. RESULTS AND CONCLUSION:(1)Through calculation and analysis,after calculating the compression stiffness by comparing the deformation of each model,the compression stiffness of each model under various loads showed the trend:physiological group>proximal femoral nail antirotation group>proximal femoral locking plate group>percutaneous compression plate group>dynamic hip screw group.The compressive stiffness of the complete physiological group model was significantly higher than that of all surgical group models.(2)The stress index was observed.Due to the stress shielding effect,the stress peak value of each fixed group was higher than that of physiological group,and the maximum peak value was concentrated on each internal fixation.Proximal femoral nail antirotation group had the smallest stress peak,while dynamic hip screw group had the highest stress.The stress distribution trend showed physiological group
5.Comparison of posterior C2-3 fixation combined with bucking bar technique and posterior C2-3 fixation alone in treatment of unstable Hangman fractures
Hao ZHANG ; Qing WANG ; Jian ZHANG ; Guangzhou LI ; Gaoju WANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1848-1854
BACKGROUND:Types II,IIA,and III of Hangman fractures often require surgical treatment,and the selection of surgical methods is controversial.Current surgeries have shortcomings such as incomplete reduction and malunion after surgery.In the early stage,our team used C2-3 lag screws combined with a bucking bar.Intermittent pushing of the C2 vertebral body in the oropharynx has achieved satisfactory clinical results.However,the preliminary studies included few samples and lacked a control group for comparison. OBJECTIVE:To compare the clinical efficacy of posterior C2-3 fixation combined with the bucking bar technique and posterior C2-3 fixation alone in the treatment of unstable Hangman fractures. METHODS:The clinical and imaging data of 55 patients with unstable Hangman fractures who underwent posterior C2-3 internal fixation in Affiliated Hospital of Southwest Medical University were retrospectively analyzed.According to the surgical plan,the patients were divided into two groups.Among them,23 patients received posterior cervical C2-3 internal fixation combined with the bucking bar technique(group A),and 32 patients received simple posterior C2-3 internal fixation(group B).Operation time,intraoperative blood loss,complications,pain visual analog scale score,neck disability index,American Spinal Injury Association classification,and patient satisfaction(Odom's classification)preoperation and during follow-up were compared between the two groups.The changes in C2-3 displacement and angulation and other imaging indicators were compared at each observation time point. RESULTS AND CONCLUSION:(1)There was no statistically significant difference in operation time,intraoperative blood loss,and postoperative complications between the two groups(P>0.05).(2)The neck pain visual analog scale and neck disability index scores of the two groups of patients at the final follow-up were significantly improved compared with those before surgery(P<0.05).The Odom standard classification showed that 21 cases(91%)in group A were excellent and 29 cases(91%)were excellent and good in group B.There was no statistically significant difference in the clinical efficacy indicators between the two groups(all P>0.05).(3)There was no significant difference in C2-3 angulation and displacement between the two groups before operation(P>0.05).Postoperation and at the last follow-up,the angle and displacement of C2-3 in both groups were significantly smaller than before surgery,and the difference was statistically significant(P<0.01).There was no statistically significant difference in the above indicators after surgery and at the last follow-up(P>0.05).After surgery and at the last follow-up,the displacement and angle of C2-3 in group A were significantly smaller than those in group B(P<0.05).(4)At the last follow-up,no patients in group A had residual deformity,and 4 cases(13%,4/32)in group B had residual deformity.(5)Therefore,posterior C2-3 fixation combined with transoral bucking bar technology may be beneficial to the reduction and stabilization of the vertebral body,reduces malunion,and can achieve better reduction.
6.Assessing distribution characteristics and clinical significance of vertebral fractures in patients with osteoporosis based on whole spine MRI
Jiajun ZHOU ; Fei MA ; Yebo LENG ; Shicai XU ; Baoqiang HE ; Yang LI ; Yehui LIAO ; Qiang TANG ; Chao TANG ; Qing WANG ; Dejun ZHONG
Chinese Journal of Tissue Engineering Research 2025;29(9):1883-1889
BACKGROUND:Osteoporotic vertebral fractures are the most common complication in patients with osteoporosis.As a new imaging technique,spine magnetic resonance imaging(MRI)is much more sensitive than X-ray film in the diagnosis of osteoporotic vertebral fractures.However,total spine MRI is costly and takes a long time to scan.Therefore,there is no consensus on whether all patients with osteoporotic vertebral fractures need to undergo total spine MRI scan and which patients need to undergo total spine MRI. OBJECTIVE:To analyze the distribution characteristics of vertebral fractures and explore their clinical significance by observing the whole spine MRI data of osteoporotic vertebral fractures patients. METHODS:Data of cases and MRI images of all patients diagnosed with fresh osteoporotic vertebral fractures who visited the Department of Orthopedics,Affiliated Hospital of Southwest Medical University from August 2018 to September 2022 were retrospectively analyzed.903 patients were included in the study based on inclusion and exclusion criteria.General information(age,gender,and body mass index),medical history characteristics(duration of illness,history of trauma surgery,percussion pain area,and pain score)were collected.The characteristics of vertebral fractures were analyzed through whole spine magnetic resonance imaging.Firstly,based on the number of vertebral fractures in patients,they were divided into the single vertebral fracture group(484 cases)and the multi-vertebral fracture group(419 cases),and the differences were analyzed between the two groups.Then,based on whether the farthest interval between the fractured vertebrae was greater than or equal to 5,the multi vertebral fracture group was further divided into two subgroups.Among them,Group A(the farthest interval between the fractured vertebrae was less than 5)contained 306 cases;Group B(with the farthest interval between fractured vertebral bodies greater than 5)included 113 cases.The differences were analyzed between two subgroups. RESULTS AND CONCLUSION:(1)Among 903 patients,419 patients(46.4%)had more than two fractured vertebrae.There were 654 patients(72.4%)with thoracolumbar fractures,and 54 patients(6%)with fractures in the thoracic plus lumbar region and the entire thoracic to lumbar region.In group B,96.5%of patients had multiregional percussion pain.(2)Compared with the patients in the single vertebral fracture group and the multi-vertebral fracture group,there were significant differences in bone mineral density,whether the medical history was greater than or equal to 1 month,the history of low energy injury,and the distribution and number of axial percussion pain areas in the spine during physical examination between the two groups(P<0.05).Age,gender,body mass index,whether there was underlying disease,pain visual analog scale score,whether there was a history of elderly thoracolumbar fracture,and whether there was a history of thoracolumbar surgery,and the number of fractured vertebrae had no statistical significance(P>0.05).(3)There were statistically significant differences between the Groups A and B in bone mineral density,the distribution and quantity of percussion pain area,and the history of low energy injury(P<0.05).There were no significant differences in age,gender,history of old fractures,visual analog scale score,body mass index,whether the medical history was longer than or equal to 1 month,history of underlying diseases,and history of thoracolumbar surgery between the two groups(P>0.05).(4)Patients with multiple low-energy trauma history,history of more than 1 month,multiple percussion pain,and the lower bone mineral density should be alert to the occurrence of multiple vertebral fracture and jump fracture.We recommend the whole spinal MRI for these patients.
7.Treadmill training activates endogenous neural stem cells to promote spinal cord injury repair in mice
Chanjuan CHEN ; Zeyu SHANGGUAN ; Qizhe LI ; Wei TAN ; Qing LI
Chinese Journal of Tissue Engineering Research 2025;29(19):3976-3982
BACKGROUND:Treadmill training is one of the effective ways to promote the recovery of motor function after spinal cord injury.Treadmill training can promote neurogenesis,but the effect of different intensities of treadmill training on the activation of endogenous stem cells is still unclear. OBJECTIVE:To analyze the activation effect of different intensities of treadmill training on endogenous neural stem cells in the spinal cord of mice after spinal cord injury. METHODS:Fifty female C57BL/6J mice were divided into control group,spinal cord injury group,low-,moderate-,and high-intensity exercise groups with 10 mice in each group by random number table method.T10 segment spinal cord injury model was constructed by the clamp method in spinal cord injury group,low-,moderate-,and high-intensity exercise groups.On day 7 after spinal cord injury,mice in the low-,moderate-,and high-intensity exercise groups were respectively trained on the treadmill with corresponding intensity,3 times/d,10 min/times,6 times a week for 28 consecutive days.At 3,7,14,21,and 28 days after treadmill training,the hind limb motor function was evaluated by BMS score.At 28 days after treadmill training,the spinal cord tissue of the injured area was obtained,and the expression of epidermal growth factor receptor,glial fibrillary acidic protein,and 5-Ethynyl-2'-deoxyuridine(EdU),a proliferative marker,was detected.Hematoxylin-eosin staining was used to observe the morphology of spinal cord. RESULTS AND CONCLUSION:(1)The BMS score of mice in the spinal cord injury group was lower than that in the control group(P<0.05).With the extension of treadmill training time,the BMS scores of mice with spinal cord injury gradually increased,and the BMS scores of mice in moderate-intensity exercise group on days 14 and 21 after treadmill training were higher than those in spinal cord injury group and low-and high-intensity exercise groups(P<0.05).The BMS score of mice in moderate-and high-intensity exercise group was higher than that in spinal cord injury group and low-intensity exercise group at 28 days after treadmill training(P<0.05).(2)Compared with the control group,the proportion of epidermal growth factor receptor and EdU positive cells was increased in spinal cord injury group(P<0.05).Compared with spinal cord injury group,the proportion of epidermal growth factor receptor and EdU positive cells was increased in low-,moderate-,and high-intensity exercise groups(P<0.05),and the highest was found in moderate-intensity exercise group.Compared with control group,the proportion of glial fibrillary acidic protein positive cells was increased in spinal cord injury group(P<0.05).Compared with spinal cord injury group,the proportion of glial fibrillary acidic protein positive cells was lower in low-,moderate-,and high-intensity exercise groups(P<0.05),and the moderate-intensity exercise group was the lowest.(3)Hematoxylin-eosin staining showed that a large cavity was formed in the injured area of mice with spinal cord injury,and the cavity in the injured area of mice with spinal cord injury decreased after different intensities of treadmill training,and the decrease was most obvious in the moderate-intensity exercise group.(4)These results indicate that low-,moderate-,and high-intensity treadmill training can promote the recovery of motor function of mice with spinal cord injury by activating endogenous neural stem cells,and the effect of moderate-intensity exercise training is the most obvious.
8.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
9.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
10.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.

Result Analysis
Print
Save
E-mail