1.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
2.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
3.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
4.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
5.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
6.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
7.Identification of Rare 3.5 kb Deletion in the β-Globin Gene Cluster.
Yun-Hua FAN ; Cui-Lin DUAN ; Sai-Li LUO ; Shi-Jun GE ; Chong-Fei YU ; Jue-Min XI ; Jia-You CHU ; Zhao-Qing YANG
Journal of Experimental Hematology 2025;33(1):175-179
OBJECTIVE:
To identify the gene mutation types of 4 suspected β-thalassemia patients in Yunnan Province, and to analyze the genotypes and hematological phenotypes.
METHODS:
Whole genome sequencing was performed on the samples of 4 suspected β-thalassemia patients from the Dai ethnic group in a thalassemia endemic area of Yunnan Province, whose hematological phenotypes were not consistent with the results of common thalassemia gene mutations. The mutations of β-globin gene clusters were confirmed by polymerase chain reaction (PCR) and Sanger DNA sequencing technology.
RESULTS:
The 3.5 kb deletion in β-globin gene cluster (NC_000011.10: g. 5224302-5227791del3490bp) was detected in 4 patients' samples, of which 1 case was also detected with HbE mutation and 1 case with CD17 mutation. These 2 patients displayed moderate anemia phenotype, while the two patients with only the 3.5 kb deletion presented with other mild anemia phenotype.
CONCLUSION
Heterozygous carriers with rare 3.5 kb deletion of the β-globin gene cluster may develop mild anemia, compound mutations of the 3.5 kb deletion with other mutations may led to intermediate thalasemia with moderate to sever anemia. In areas with a high incidence of thalassemia, suspected patients should undergo genetic testing to avoid missing or misdiagnosing rare mutations.
Humans
;
beta-Globins/genetics*
;
Multigene Family
;
beta-Thalassemia/genetics*
;
Mutation
;
Genotype
;
Sequence Deletion
;
Phenotype
;
Male
;
Female
8.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
9.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.
10.Photobiomodulation-induced osteogenic differentiation of mesenchymal stem cells
Yue SONG ; Qing SHU ; Shaohui JIA ; Jun TIAN
Chinese Journal of Tissue Engineering Research 2024;28(19):3069-3075
BACKGROUND:Mesenchymal stem cells are pluripotent stromal cells isolated from a variety of tissues,which can differentiate into osteoblasts under certain conditions.Photobiomodulation,as an external stimulus,can promote osteogenic differentiation combined with other inducers or alone,providing new ideas for solving a series of bone diseases. OBJECTIVE:To review the relevant literature and mechanisms of photobiomodulation-induced osteogenic differentiation of mesenchymal stem cells,which will lay a theoretical foundation for bone tissue engineering using mesenchymal stem cells as seed cells and may offer some suggestions for future studies. METHODS:Relevant articles were searched on CNKI,PubMed and Wed of Science databases with Chinese search terms of"photobiomodulation,low power laser,low level laser,light-emitting diode,mesenchymal stem cells,osteogenic differentiation,biomaterials"and English search terms of"photobiomodulation,low level laser(light),light-emitting diode(LED),mesenchymal stem cell,osteogenic differentiation,biomaterials".Finally,88 articles were included for analysis. RESULTS AND CONCLUSION:(1)Photobiomodulation represented by low level laser and diode laser has a positive effect on promoting the proliferation and differentiation of mesenchymal stem cells.(2)Photobiomodulation can induce osteogenic differentiation of mesenchymal stem cells,whose feasibility has been verified in cell and animal experiments.On one hand,photobiomodulation can promote the expansion and differentiation of stem cells in vitro by activating related signaling pathways and up-regulating the expression of osteogenic molecules.On the other hand,photobiomodulation can improve the survival rate of stem cells in vivo,promote homing effect and shorten the healing time of bone defects after stem cells are injected into the body.However,photobiomodulation has a biphasic dose effect,whose laser parameters,experimental environment,cell type and other factors in various studies are different,making the research results lack consistency and difficult to apply in the clinic.(3)Combined with biological materials,other physical factors and drugs,photobiomodulation can also accelerate osteogenic differentiation.(4)In conclusion,photobiomodulation has been used increasingly widely in the medical field with its advantages of non-invasive,efficient and less-side reactions,and its role in bone tissue engineering has gradually become prominent,which provides a new method for the treatment of bone defects and related diseases.Further exploration should be focused on the standardized treatment parameters of photobiomodulation.

Result Analysis
Print
Save
E-mail