1.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Association analyses of early medication clocking-in trajectory with smart tools and treatment outcome in pulmonary tuberculosis patients
Chunhua XU ; Zheyuan WU ; Yong WU ; Qing WANG ; Zichun WANG ; Nan QIN ; Xinru LI ; Yucong YAO ; Kehua YI ; Yi HU
Shanghai Journal of Preventive Medicine 2025;37(3):210-214
ObjectiveTo construct a group-based trajectory model (GBTM) for early medication adherence check-in, and to analyze the relationship between different trajectories and treatment outcomes in tuberculosis patients using data that were generated from smart tools for monitoring their medication adherence and check-in. MethodsFrom October 1, 2022 to September 30, 2023, a total of 163 pulmonary tuberculosis patients diagnosed in Fengxian District were selected as the study subjects. The GBTM was utilized to analyze the weekly active check-in trajectories of the subjects during the first 4 weeks and establish different trajectory groups. The χ² tests were employed to compare the differences between groups and logistic regression analysis was conducted to explore the relationship between different trajectory groups and treatment outcomes. ResultsA total of four groups were generated by GBTM analyses, of which a low level of punch card was maintained in group A, 6% of the drug users increased rapidly from a low level in group B, 17% of drug users increased gradually from a low level in group C, and 18% of drug users maintained a high level of punch card in group D. The trajectory group was divided into two groups according to homogeneity, namely the low level medication punch card group (group A) and the high level medication punch card group (group B, group C, and group D). The results of multivariate logistic regression analyses revealed that low-level medication check-in (OR=3.250, 95%CI: 1.089‒9.696), increasing age (OR=1.030, 95%CI: 1.004‒1.056), and not undergoing sputum examination at the end of the fifth month (OR=2.746, 95%CI: 1.090‒7.009) were significantly associated with poor treatment outcomes. ConclusionThe medication check-in trajectory of pulmonary tuberculosis patients within the first 4 weeks is correlated with adverse outcomes, or namely consistent low-level medication adherence check-ins are associated with poor treatment outcomes, while high-level medication adherence check-ins are associated with a lower incidence of adverse outcomes.
4.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
5.Analysis of risk factors for diaphragmatic dysfunction after cardiovascular surgery with extracorporeal circulation: A retrospective cohort study
Xupeng YANG ; Yi SHI ; Fengbo PEI ; Simeng ZHANG ; Hao MA ; Zengqiang HAN ; Zhou ZHAO ; Qing GAO ; Xuan WANG ; Guangpu FAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1140-1145
Objective To clarify the risk factors of diaphragmatic dysfunction (DD) after cardiac surgery with extracorporeal circulation. Methods A retrospective analysis was conducted on the data of patients who underwent cardiac surgery with extracorporeal circulation in the Department of Cardiovascular Surgery of Peking University People's Hospital from January 2023 to March 2024. Patients were divided into two groups according to the results of bedside diaphragm ultrasound: a DD group and a control group. The preoperative, intraoperative, and postoperative indicators of the patients were compared and analyzed, and independent risk factors for DD were screened using multivariate logistic regression analysis. Results A total of 281 patients were included, with 32 patients in the DD group, including 23 males and 9 females, with an average age of (64.0±13.5) years. There were 249 patients in the control group, including 189 males and 60 females, with an average age of (58.0±11.2) years. The body mass index of the DD group was lower than that of the control group [(18.4±1.5) kg/m2 vs. (21.9±1.8) kg/m2, P=0.004], and the prevalence of hypertension, chronic obstructive pulmonary disease, heart failure, and renal insufficiency was higher in the DD group (P<0.05). There was no statistical difference in intraoperative indicators (operation method, extracorporeal circulation time, aortic clamping time, and intraoperative nasopharyngeal temperature) between the two groups (P>0.05). In terms of postoperative aspects, the peak postoperative blood glucose in the DD group was significantly higher than that in the control group (P=0.001), and the proportion of patients requiring continuous renal replacement therapy was significantly higher than that in the control group (P=0.001). The postoperative reintubation rate, tracheotomy rate, mechanical ventilation time, and intensive care unit stay time in the DD group were higher or longer than those in the control group (P<0.05). Multivariate logistic regression analysis showed that low body mass index [OR=0.72, 95%CI (0.41, 0.88), P=0.011], preoperative dialysis [OR=2.51, 95%CI (1.89, 4.14), P=0.027], low left ventricular ejection fraction [OR=0.88, 95%CI (0.71, 0.93), P=0.046], and postoperative hyperglycemia [OR=3.27, 95%CI (2.58, 5.32), P=0.009] were independent risk factors for DD. Conclusion The incidence of DD is relatively high after cardiac surgery, and low body mass index, preoperative renal insufficiency requiring dialysis, low left ventricular ejection fraction, and postoperative hyperglycemia are risk factors for DD.
6.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
7.Tildrakizumab for moderate-to-severe plaque psoriasis in Chinese patients: A 12-week randomized placebo-controlled phase III trial with long-term extension
Chen YU ; Songmei GENG ; Bin YANG ; Yunhua DENG ; Fuqiu LI ; Xiaojing KANG ; Mingye BI ; Furen ZHANG ; Yi ZHAO ; Weili PAN ; Zhongwei TIAN ; Jinhua XU ; Zhenghua ZHANG ; Nan YU ; Xinsuo DUAN ; Shuping GUO ; Qing SUN ; Weiquan LI ; Juan TAO ; Zhijun LIU ; Yuanyuan YIN ; Gang WANG
Chinese Medical Journal 2024;137(10):1190-1198
Background::There is a need for effective and safe therapies for psoriasis that provide sustained benefits. The aim of this study was to assess the efficacy and safety of tildrakizumab, an anti-interleukin-23p19 monoclonal antibody, for treating moderate-to-severe plaque psoriasis in Chinese patients.Methods::In this multi-center, double-blind, phase III trial, patients with moderate-to-severe plaque psoriasis were enrolled and randomly assigned (1:1) to receive subcutaneous tildrakizumab 100 mg or placebo at weeks 0 and 4. Patients initially assigned to placebo were switched to receive tildrakizumab at weeks 12, 16, and every 12 weeks thereafter. Patients in the tildrakizumab group continued with tildrakizumab at week 16, and every 12 weeks until week 52. The primary endpoint was the Psoriasis Area and Severity Index (PASI 75) response rate at week 12.Results::At week 12, tildrakizumab demonstrated significantly higher PASI 75 response rates (66.4% [73/110] vs. 12.7% [14/110]; difference, 51.4% [95% confidence interval (CI), 40.72, 62.13]; P <0.001) and Physician’s Global Assessment (60.9% [67/110] vs. 10.0% [11/110]; difference, 49.1% [95% CI, 38.64, 59.62]; P <0.001) compared to placebo. PASI 75 response continued to improve over time in both tildrakizumab and placebo-switching to tildrakizumab groups, reaching maximal efficacy after 28 weeks (86.8% [92/106] vs. 82.4% [89/108]) and maintained up to 52 weeks (91.3% [95/104] vs. 87.4% [90/103]). Most treatment-emergent adverse events were mild and not related to tildrakizumab. Conclusion::Tildrakizumab demonstrated durable efficacy through week 52 and was well tolerated in Chinese patients with moderate-to-severe plaque psoriasis.Trial registration::ClinicalTrials.gov, NCT05108766.
8.LncRNA UNC5B-AS1 regulates malignant biological behavior of osteosarcoma cells through NF-κB signaling pathways
Qing-Lin YANG ; Huai-Bin ZHANG ; Zhi-Jie LAN ; Qing-Qing QIN ; Yi-Kun WANG ; Yong-Ping WANG
Chinese Pharmacological Bulletin 2024;40(6):1082-1088
Aim To investigate the possible mecha-nism of UNC5B-AS1 in regulating the malignant biolog-ical behavior of osteosarcoma cells.Methods RT-qPCR was used to detect the expression of UNC5B-AS1 in osteosarcoma cells MG63,osteosarcoma cells U2OS and osteoblast cells hFOB1.19.After overexpression and knockdown of UNC5B-AS1 in osteosarcoma cells,the proliferation,migration and apoptosis of osteosarco-ma cells were detected by CCK-8 assay,Transwell as-say and flow cytometry,respectively.At the same time,RT-qPCR and Western blot were used to detect the effects of UNC5B-AS1 overexpression and knock-down on the mRNA and protein expression of key fac-tors in the NF-κB signaling pathway.Results Com-pared with normal osteoblast hFOB1.19,UNC5B-AS1 expression was differentially increased in osteosarcoma cells MG63 and U2OS.Overexpression of UNC5B-AS1 significantly promoted the proliferation of osteosarcoma cells and significantly increased the migration ability of osteosarcoma cells,while the apoptosis rate markedly decreased,and NF-κB signaling pathway-related mR-NA and protein expressions apparently increased.Knockdown of UNC5B-AS1 evidently inhibited the pro-liferation of osteosarcoma cells and significantly re-duced the migration ability of osteosarcoma cells,while the apoptosis rate markedly increased,the NF-κB sig-naling pathway related mRNA and protein expression significantly reduced.Conclusions lncRNA UNC5B-AS1 is highly expressed in osteosarcoma cells,which may affect the malignant biological behavior of osteo-sarcoma cells by activating the NF-κB signaling path-way.
9.Effects of emetine on insulin secretion in rat islets through GLP-1R
Huan XUE ; Zhi-Hong LU ; Bin WANG ; Si-Ting YU ; Xi ZHANG ; Bin HU ; Qing-Xuan ZENG ; Yi ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1267-1272
Aim To study the effect of emetine on in-sulin secretion through glucagon-like peptide-1 receptor(GLP-1R).Methods Isolating rat islets were used to carry out insulin secretion experiment.Islets were incubated with different concentrations of emetine(2,10,50 μmol·L-1),different concentrations of glu-cose solution(2.8,11.1,16.7 mmol·L-1)or spe-cific GLP-1R antagonist Exendin(9-39).The amount of insulin secretion in the supernatant of each group was determined by an enzyme-linked radioimmunoas-say.Small molecule compounds were docked to GLP-1R(PDB code:5NX2)using SYBYL-X2.0 software.Results Emetine could promote insulin secretion in high glucose(11.1 mmol·L-1)in a dose-dependent manner.In low glucose(2.8 mmol·L-1),insulin secretion did not change after intervention of emetine.But in high glucose(11.1,16.7 mmol·L-1),insu-lin secretion significantly increased under the treatment of emetine in a glucose-dependent manner.The doc-king score of emetine and GLP-1R was Total Score=6.82,C Score=5,indicating that emetine had a good binding affinity with GLP-1R.Using Exendin(9-39)to block GLP-1R,the insulinotropic effect of emetine was reduced.Conclusion Emetine could promote in-sulin secretion,which is related to the activation of GLP-1R.
10.The RNA binding protein QKI can promote gastric cancer by regulating cleavage of EMT-related gene transcripts to form circRNAs
Yi-Shuang CUI ; Xuan ZHENG ; Ya-Nan WU ; Yi-Han YAO ; Jun WANG ; Zi-Qing LIU ; Guo-Gui SUN
Chinese Pharmacological Bulletin 2024;40(8):1462-1473
Aim To study the proliferation,invasion and migration ability of Quaking(QKI)in gastric cancer(GC)via elucidating the molecular mechanisms associated with QKI in the occurrence and development of GC through bioinformatics.Methods Differential expression analysis of QKI was performed across vari-ous human cancer samples by merging data from the TCGA and GTEx databases.The correlation was ana-lyzed between QKI protein expression and tumor muta-tion burden(TMB)score,microsatellite instability(MSI)score,and ESTIMATE score,and the correla-tion was also explored between QKI protein expression and overall survival(OS),disease free survival(DFS),and progression free survival(PFS).EMT related genes that could encode DECircRNAs were ob-tained through bioinformatics analysis to construct a QKI-EMT-circRNAs regulatory network.The differenti-ally expressed circRNAs and EMT related genes in TMK1 cells were verified.The proliferation,invasion and migration ability of the QKI was studied by using the knockdown system.Results QKI was differential-ly expressed in the vast majority of tumors and was closely related to TMB,MSI,and tumor microenviron-ment(TME);QKI emerged as a high-risk factor for predicting OS,DFS,and PFS in individuals with com-mon human cancers.QKI regulated the splicing of 6 EMT related gene transcripts to form eight circRNAs,all of which were significantly associated with the prog-nosis of gastric cancer patients.Cell experiments showed that compared to normal gastric epithelial cells,only hsa_ccirc_0004015,CALD1,and CDK14 were down-regulated in TMK1 cells.Knocking down QKI inhibited the proliferation,invasion and migration ability of TMK1 cells.Conclusion QKI exerts regu-latory control over the transcription of six EMT-related genes,resulting in the formation of circRNAs,thereby promoting the pathogenesis and progression of GC.QKI is highly expressed in TMK1 cells,and knock-down of QKI can inhibit the proliferation,invasion and migration ability of TMK1 cells.

Result Analysis
Print
Save
E-mail