1.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the
2.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
5.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
6.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
7.Clinical and genetic characteristics of congenital adrenal hyperplasia: a retrospective analysis.
Cai-Jun WANG ; Ya-Wei ZHANG ; Da-Peng LIU ; Juan JIN ; Zhao-Hui LI ; Jing GUO ; Yao-Dong ZHANG ; Hai-Hua YANG ; Wen-Qing KANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1367-1372
OBJECTIVES:
To study the clinical and genetic characteristics of children with congenital adrenal hyperplasia (CAH).
METHODS:
Clinical data, laboratory findings, and genetic test results of 63 children diagnosed with CAH at Henan Children's Hospital from January 2017 to December 2024 were retrospectively reviewed.
RESULTS:
Of the 63 patients, the mean age at the first visit was (21 ± 14) days; 29 (46%) were of male sex and 34 (54%) were of female sex. The predominant clinical manifestations were poor weight gain or weight loss (92%, 58/63), poor feeding (84%, 53/63), skin hyperpigmentation (83%, 52/63), and female external genital anomalies (100%, 34/34). Laboratory abnormalities included hyponatremia (87%, 55/63), hyperkalemia (68%, 43/63), metabolic acidosis (68%, 43/63), and markedly elevated 17-hydroxyprogesterone (92%, 58/63), testosterone (89%, 56/63), and adrenocorticotropic hormone (81%, 51/63). Among 49 patients who underwent genetic testing, CYP21A2 variants were identified in 90% (44/49), with c.293-13A/C>G (33%, 30/91) and large deletions/gene conversions (29%, 26/91) being the most frequent; STAR (8%, 4/49) and HSD3B2 (2%, 1/49) variants were also detected. Following hormone replacement therapy, electrolyte disturbances were corrected in 57 cases, with significant reductions in 17-hydroxyprogesterone, adrenocorticotropic hormone, and testosterone levels (P<0.001).
CONCLUSIONS
CAH presenting in neonates or young infants is characterized by electrolyte imbalance, external genital anomalies, and abnormal hormone levels. Genetic testing enables definitive subtype classification; in CYP21A2-related CAH, c.293-13A/C>G is a hotspot variant. These findings underscore the clinical value of genetic testing for early diagnosis and genetic counseling in CAH. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(11): 1367-1372.
Humans
;
Adrenal Hyperplasia, Congenital/diagnosis*
;
Male
;
Female
;
Retrospective Studies
;
Infant
;
Infant, Newborn
8.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
9.The Role of Nrf2 in Exercise Improving of NAFLD
Ge ZHAO ; Yuan LUO ; Ya-Ping LI ; Yan-Qing YAN ; Shu-Jing LIU
Progress in Biochemistry and Biophysics 2024;51(5):1079-1089
In cardiovascular disorders, neurological diseases, and chronic metabolic diseases, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is essential for maintaining cell homeostasis. According to studies, boosting Nrf2 expression can be used to cure or prevent chronic diseases that are characterized by oxidative stress, inflammation, and mitochondrial dysfunction. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease characterized by hepatic steatosis brought on by a number of causes other than alcohol. In recent years, its incidence has gradually risen across the globe. According to relevant studies, NAFLD and the Nrf2 signaling pathway are tightly connected. Inhibiting lipid production and metabolism-related enzymes, repairing impaired liver metabolism, and lowering hepatic lipid storage are all possible with Nrf2 activation. Exercise is a powerful tool for treating and preventing NAFLD. However, exercise type, exercise intensity, environment, and exhaustion all have an impact on the Nrf2 signaling pathway. By activating Nrf2, exercise can lessen liver inflammation, oxidative stress, endoplasmic reticulum stress, and insulin resistance, and ameliorate liver damage to improve NAFLD. The activation of Nrf2 signaling pathway, its associated mechanism of controlling antioxidation, and the impact of exercise on the Nrf2 signaling pathway are all explained in this work. Based on the pathogenesis of NAFLD, this article examines the connection between exercise, Nrf2, and NAFLD, and the current state of knowledge regarding Nrf2’s role in the amelioration of NAFLD through exercise. It offers a theoretical frame of reference for future research into how Nrf2 might be used to improve NAFLD.
10.Bioequivalence test of metronidazole tablets in healthy human in China
Xiu-Qing PENG ; Cai-Hui GUO ; Ya-Li LIU ; Na ZHAO ; Hao-Jing SONG ; Wan-Jun BAI ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1943-1947
Objective To evaluate the bioequivalence of metronidazole tablet and reference formulation in Chinese healthy subjects.Methods A single-dose,two-cycle,randomized,open,self-crossover trial was designed with 48 healthy subjects randomly assigned to fasting or postprandial group.For each group,a single oral dose of metronidazole tablet(200 mg)or a reference preparation(200 mg)per cycle were enrolled.The concentration of metronidazole in plasma was measured by high performance liquid chromatography tandem mass spectrometry(HPLC-MS/MS).The non-compartmental model was applied to calculate the pharmacokinetic parameters for bioequivalence analysis via SAS 9.3 software.Results The main pharmacokinetic parameters of test and reference metronidazole tablets in the fasting group were as follows,the Cmax were(4 855.00±1 383.97)and(4 799.13±1 195.32)ng·h·mL-1;the AUC0-t were(54 834.68±12 697.88)and(55 931.35±11 935.28)ng·h·mL-1;the AUC0-∞ were(56 778.09±13 937.76)and(57 922.83±13 260.54)ng·h·mL-1;the Tmax were respectively 1.17 and 1.00 h;t1/2 were(8.99±1.76)and(9.11±1.73)h,respectively.The ratio of the geometric mean and its 90%confidence intervals(CI)of Cmax,AUC0-t and AUC0-∞ were all within the equivalent interval of 80.00%-125.00%.As for postprandial conditions,the main pharmacokinetic parameters of test and reference metronidazole tablets were as follows,the Cmax were(4 057.08±655.08)and(4 044.17±773.98)ng·h·mL-1;the AUC0-t were(55 956.42±12 228.12)and(55 121.04±11 784.55)ng·h·mL-1;the AUC0-∞ were(58 212.83±13 820.00)and(57 350.38±13 229.46)ng·h·mL-1;the Tmax were 2.50 and 2.25 h;the t1/2 were(9.37±1.68)and(9.37±1.79)h,respectively.The ratio of the geometric mean and 90%CI of Cmax,AUC0-t and AUC0-∞ were all within the equivalent interval of 80.00%-125.00%.Conclusion The two preparations were bioequivalent to Chinese healthy adult volunteers under both fasting and fed conditions.

Result Analysis
Print
Save
E-mail