1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Mechanical stability of intertrochanteric fracture of femur with different internal fixation systems
Xi CHEN ; Tao TANG ; Tongbing CHEN ; Qing LI ; Wen ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(9):1783-1788
BACKGROUND:Intertrochanteric fracture of femur has various fracture types and fixation methods,and the mechanical stability of each fixation system is quite different.It is of scientific clinical significance to use finite element analysis method to carry out biomechanical research on various fixation systems. OBJECTIVE:To compare and analyze the mechanical stability of various internal fixations applied to femoral intertrochanteric fracture A031-A2.1 by finite element method. METHODS:Based on the validated finite element model of femur(Intact),the model was cut and made into A031-A2.1 intertrochanteric fracture of femur.Different internal fixation systems were implanted by simulating clinical operation methods,and fixation models of proximal femoral nail antirotation,dynamic hip screw,percutaneous compression plate and proximal femoral locking plate were established respectively.All nodes under the distal femur of the four groups of models were constrained,and compression loads of 700,1 400 and 2 100 N were applied to the femoral head.Von Mises stress distribution and compression stiffness of each group of models were observed through calculation and analysis,and mechanical stability of each group was compared. RESULTS AND CONCLUSION:(1)Through calculation and analysis,after calculating the compression stiffness by comparing the deformation of each model,the compression stiffness of each model under various loads showed the trend:physiological group>proximal femoral nail antirotation group>proximal femoral locking plate group>percutaneous compression plate group>dynamic hip screw group.The compressive stiffness of the complete physiological group model was significantly higher than that of all surgical group models.(2)The stress index was observed.Due to the stress shielding effect,the stress peak value of each fixed group was higher than that of physiological group,and the maximum peak value was concentrated on each internal fixation.Proximal femoral nail antirotation group had the smallest stress peak,while dynamic hip screw group had the highest stress.The stress distribution trend showed physiological group
3.Effect of Ophiopogonin D on lipopolysaccharide-induced apoptosis of alveolar epithelial cells
Qing-Xin KANG ; Shen-Shan JIAO ; Zheng XIONG ; Hui-Ming XI ; Xun-Sheng JIANG ; Zi-Long ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(12):1744-1748
Objective To investigate the effect of Ophiopogonin D on lipopolysaccharide(LPS)-induced apoptosis of alveolar epithelial cells by regulating the interleukin-6(IL-6)/Janus kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3)signaling pathway.Methods A549 AT Ⅱ cells cultured in vitro were randomly divided into four groups:control group,LPS group,LPS+Ophiopogonin D group,LPS+Ophiopogonin D+colivelin(JAK2/STAT3 signal activator)group,except for the control group,and cells in all other groups were established injury models while being grouped with Ophiopogonin D and colivelin for treatment.Cell counting kit-8(CCK-8)experiment and flow cytometry were applied to detect cell proliferation and apoptosis in each group;Western blotting was applied to detect the expression of IL-6/JAK2/STAT3 signaling pathway proteins of cells in each group.Results The apoptosis rates of A549 cells in control group,LPS group,LPS+Ophiopogonin D group and LPS+Ophiopogonin D+colivelin group were(2.52±0.73)%,(52.43±4.14)%,(1.67±0.52)%and(47.94±3.43)%;IL-6 protein levels were 0.14±0.03,0.49±0.05,0.17±0.04 and 0.45±0.06,and p-JAK2/JAK2 protein levels were 0.17±0.04,0.64±0.08,0.19±0.06 and 0.61±0.07;p-STAT3/STAT3 protein levels were 0.20±0.06,0.69±0.10,0.22±0.07 and 0.65±0.09;the apoptosis rates of AT Ⅱ cells were(3.01±0.69)%,(55.16±3.94)%,(2.35±0.71)%and(50.28±3.78)%;the levels of IL-6 protein were 0.11±0.03,0.87±0.13,0.19±0.04 and 0.84±0.12;the p-JAK2/JAK2 protein levels were 0.13±0.04,0.56±0.08,0.15±0.03 and 0.53±0.07;p-STAT3/STAT3 protein levels were 0.30±0.08,0.79±0.14,0.33±0.09 and 0.75±0.13.The above indexes:control group,LPS+Ophiopogonin D group compared with LPS group,LPS+Ophiopogonin D+colivelin group compared with LPS+Ophiopogonin D group,the differences were statistically significant(all P<0.05).Conclusion Ophiopogonin D can reduce LPS induced inflammation and oxidative stress levels by inhibiting the activation of IL-6/JAK2/STAT3 signaling pathway,ultimately reducing LPS-induced apoptosis of alveolar epithelial cells.
4.Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023 edition).
Qing ZHAO ; Tong WANG ; Hongbin WANG ; Peng CAO ; Chengyu JIANG ; Hongzhi QIAO ; Lihua PENG ; Xingdong LIN ; Yunyao JIANG ; Honglei JIN ; Huantian ZHANG ; Shengpeng WANG ; Yang WANG ; Ying WANG ; Xi CHEN ; Junbing FAN ; Bo LI ; Geng LI ; Bifeng LIU ; Zhiyang LI ; Suhua QI ; Mingzhen ZHANG ; Jianjian ZHENG ; Jiuyao ZHOU ; Lei ZHENG ; Kewei ZHAO
Chinese Herbal Medicines 2024;16(1):3-12
To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.
5.Synthesis of ornithine peptidomimetic efflux pump inhibitors and synergistic antibiotic activity against Pseudomonas aeruginosa
Xi ZHU ; Xi-can MA ; Xin-tong ZHANG ; Yi-shuang LIU ; Ning HE ; Yun-ying XIE ; Dan-qing SONG
Acta Pharmaceutica Sinica 2024;59(6):1720-1729
In order to solve the problem of resistance of
6.Characterization and phylogenetic analysis of the complete chloroplast genome of Salvia apiana Jepson
Zhen-xi FANG ; Qian JI ; Jia-dong HU ; Wan-sheng CHEN ; Qing LI
Acta Pharmaceutica Sinica 2024;59(5):1484-1493
italic>Salvia apiana Jepson, commonly known as white sage, is a perennial sub-shrub of the
7.Research progress in micro/nanobubbles for ultrasound diagnosis or treatment
Qing-qing AN ; Chen-xi LI ; Shao-kun YANG ; Xiao-ming HE ; Yue-heng WANG ; Chao-xing HE ; Bai XIANG
Acta Pharmaceutica Sinica 2024;59(3):581-590
In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.
8.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.
9.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
10.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.

Result Analysis
Print
Save
E-mail