1.Intervention of Acute Lung Injury by Traditional Chinese Medicine via Regulating Oxidative Stress: A Review
Ang'ang LI ; Xiao LIANG ; Junmei LI ; Qing PENG ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):305-312
Acute lung injury (ALI) is a clinically critical disease with limited treatment options and poor prognosis, with high morbidity and mortality. Pulmonary inflammation caused by trauma, infection, and other factors in vivo and in vitro can damage alveolar epithelial and vascular endothelial barriers, resulting in lung tissue congestion and edema and eventually leading to significant dyspnea and hypoxemia, It can further develop into acute respiratory distress syndrome. Oxidative stress is one of the pathogenesis of ALI. A large number of reactive oxygen species (ROS) can promote the aggregation of inflammatory cells, increase pulmonary capillary permeability, and even directly damage lung tissue. Therefore, regulating oxidative stress becomes one of the effective means to reduce the degree of lung injury. According to the theory of traditional Chinese medicine (TCM), ALI is divided into the categories of "sudden wheezing" and "dyspnea due to wheezing". TCM treats the causes of dampness, heat, poison, and stasis by syndrome differentiation and treatment, regulates Qi and blood, and balances Yin and Yang to restore the physiological function of the lung. In recent years, a large number of studies have shown that TCM can regulate ROS through multiple targets and mechanisms and play a role in reducing lung inflammation and protecting alveolar epithelial cells and endothelial vessels, in which the nuclear factor E2 associated factor 2 (Nrf2) antioxidant pathway plays an important role. Based on the generation and clearance of ROS, this article summarized the related mechanisms of TCM monomers, TCM pairs, and TCM compounds in regulating oxidative stress to prevent ALI, so as to provide theoretical reference for the research and development of new TCM for ALI and clinical treatment.
2.Relationship between ocular parameters and lens thickness in myopic patients with varying anterior chamber depth
International Eye Science 2025;25(5):826-830
AIM:To study the relationship between ocular parameters and lens thickness(LT)in myopic patients with different anterior chamber depth(ACD).METHODS:Cross-sectional study. A total of 118 myopic subjects(236 eyes)underwent posterior chamber phakic implantable collamer lens(Phakic-ICL)implantation in the refractive department of our hospital from May 2022 to May 2024 were selected. Ocular parameters examined before surgery included uncorrected visual acuity(UCVA), subjective refraction, best corrected visual acuity(BCVA), contactless intraocular pressure(IOP), ACD, white-to-white(WTW), horizontal sulcus-to-sulcus(STSH), vertical sulcus-to-sulcus(STSV), and LT. ACD without corneal thickness was measured by Pentacam, and subjects were divided into three groups: shallow anterior chamber group(2.8 mm≤ACD≤3.2 mm), middle anterior chamber group(3.2 mm
3.Dapagliflozin on acute kidney injury and prognosis in patients with diabetes mellitus type 2 and acute coronary syndrome after percutaneous coronary intervention
Huifang HAO ; Xiufeng ZHAI ; Qing LI ; Shicheng YANG ; Peng ZHANG
China Pharmacy 2025;36(4):469-474
OBJECTIVE To investigate the impact of dapagliflozin on contrast-induced acute kidney injury (CIAKI) and prognosis in patients with diabetes mellitus type 2 (T2DM) and acute coronary syndrome (ACS) who underwent percutaneous coronary intervention (PCI). METHODS Retrospective selection of data on T2DM patients with ACS who underwent PCI treatment in the Cardiology Department of Tianjin Chest Hospital from January 1st 2021 to December 31st 2022. The patients were divided into dapagliflozin group (96 cases) and control group (148 cases) based on whether they received dapagliflozin or not. Renal function indicators were measured for all enrolled patients before PCI and at 48 h and 1 week after PCI, including blood urea nitrogen (BUN), serum creatinine (Scr), estimated glomerular filtration rate (eGFR), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and β2-microglobulin (β2-MG). All patients were followed up for at least 1 year. The incidence of CIAKI and major adverse cardiac event (MACE) during follow-up were recorded for both groups. Logistic regression was used to analyze the impact of dapagliflozin on the occurrence of CIAKI, while the Log-rank test was applied to compare the incidence of MACE between the two groups. Cox regression was employed to analyze the impact of dapagliflozin on prognosis. RESULTS At 48 h and 1 week after PCI, serum levels of Cys-C, KIM-1 and β2-MG were significantly lower in the dapagliflozin group compared to the control group (P<0.05). The incidence of CIAKI was lower in the dapagliflozin group compared to the control group (6.25% vs. 14.86%, P=0.042). Logistic regression analysis revealed that dapagliflozin was an independent protective factor against CIAKI (OR=0.280, 95%CI 0.101-0.780,P=0.015). During the follow-up period, the incidence of MACE was lower in the dapagliflozin group compared to the control group (7.29% vs. 17.57%, P=0.049). Cox regression analysis indicated that dapagliflozin reduced the occurrence of MACE after PCI (HR=0.374, 95%CI 0.161-0.866, P=0.022). CONCLUSIONS With adequate hydration, the use of dapagliflozin does not increase the risk of CIAKI following PCI in T2DM patients with ACS.
4.Advances in early diabetic neuroretinopathy
International Eye Science 2025;25(1):76-81
Diabetic retinopathy(DR)is a late-stage peripheral micro-neurovascular complication of chronic hyperglycemia, leading to blood-retinal barrier impairment and retinal dysfunction. Recent studies have found that diabetic neuroretinopathy(DN)may be one of the earliest events in diabetic retinal alterations. The main features include defective electroretinographic responses in newly diagnosed patients, early self-activation of microglia and Müller cells, reduced activity of neurotransmitters(e.g., DOPA/GABA), and early mitochondrial dysfunction, such as persistent Drp1-Fis1 fission and mtDNA methylation mismatches. Understanding the molecular basis of DN is essential for elucidating its pathogenesis and developing early treatments. This review summarizes pathological changes and mechanisms of retinal function, glial cells, neurotransmitters, mitochondria, and other factors in early diabetes mellitus, in order to provide a theoretical foundation for investigating early DN mechanisms and developing targeted therapies.
5.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.
6.Mume Fructus Restores Intestinal Mucosal Epithelial Barrier Through MEK/ERK Signaling Pathway in Mouse Model of Inflammatory Bowel Disease
Huachen LIU ; Chonghao ZHANG ; Yalan LI ; Jie LIU ; Jialong SU ; Na LI ; Shaoshuai LIU ; Qing WANG ; Guiying PENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):76-85
ObjectiveTo clarify the repair effect of Mume Fructus on the intestinal mucosal epithelial barrier in the mouse model of inflammatory bowel disease (IBD) and explore the repair mechanism. MethodsThirty-six male C57BL/6 mice were randomly assigned into six groups: normal, model, low-, medium-, and high-dose (200, 400, and 800 mg·kg-1) Mume Fructus, and sulfasalazine (300 mg·kg-1). Except the normal group, the rest groups had free access to 2% dextran sulfate sodium (DSS) solution for seven days to establish the IBD model, followed by a seven-day drug intervention. The body weight change and disease activity index (DAI) were recorded. After the last administration, spleen and colon tissue samples were collected to analyze the differences in colon length and spleen index. Hematoxylin-eosin staining was used to observe the morphology of the colon tissue. The level of diamine oxidase (DAO) in the serum was measured by the DAO assay kit. Immunohistochemistry was employed to determine the expression of tight junction proteins such as Claudin-1, Occludin, and zonula occludens-1 (ZO-1) in the colon tissue. Real-time PCR was performed to measure the mRNA levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the colon tissue. Finally, Western blot was employed to determine the protein levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK), phosphorylated (p)-MEK, and phosphorylated ERK in the colon tissue. ResultsCompared with the normal group, the model group exhibited decreases in body weight and colon length (P<0.01), increases in DAI, spleen index, and serum DAO level (P<0.01), damaged colonic epithelium and goblet cells, and obvious infiltration of inflammatory cells. In addition, the model group exhibited higher positive expression of Claudin-1, Occludin, and ZO-1 (P<0.01), higher mRNA levels of TNF-α and IL-1β (P<0.01), and higher protein levels of p-MEK and p-ERK (P<0.05, P<0.01) than the normal group. However, sulfasalazine and three doses of Mume Fructus markedly decreased the body weight and DAI (P<0.05), recovered the colon length and spleen index, alleviated colon tissue damage, lowered the level of DAO in the serum (P<0.01), and down-regulated the mRNA levels of TNF-α and IL-1β (P<0.01) and the protein levels of p-MEK and p-ERK (P<0.05). Sulfasalazine and low- and medium-dose Mume Fructus increased the positive expression of Occludin, Claudin-1, and ZO-1 (P<0.05, P<0.01). Furthermore, high-dose Mume Fructus elevated the protein expression of Occludin (P<0.05). ConclusionMume Fructus can restore the expression of intestinal epithelial tight junction proteins by inhibiting the phosphorylation of proteins in the MEK/ERK signaling pathway and down-regulating the levels of TNF-α and IL-1β, thus repairing the intestinal mucosal barrier in the mouse model of IBD.
7.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
8.Research progresses of endogenous vascular calcification inhibitor BMP-7
Xin ZHOU ; Lu XING ; Peng-Quan LI ; Dong ZHAO ; Hai-Qing CHU ; Chun-Xia HE ; Wei QIN ; Hui-Jin LI ; Jia FU ; Ye ZHANG ; Li XIAO ; Hui-Ling CAO
Chinese Pharmacological Bulletin 2024;40(7):1226-1230
Vascular calcification is a highly regulated process of ectopic calcification in cardiovascular system while no effective intervention can be clinically performed up to date.As vascular calcification undergoes a common regulatory mechanism within bone formation,bone morphogenetic protein 7(BMP-7)main-tains contractile phenotype of vascular smooth muscle cells and further inhibits vascular calcification via promoting the process of osteoblast differentiation,reducing ectopic calcification pressure by increasing bone formation and reducing bone resorption.This work systematically reviews the role of BMP-7 in vascular calcifi-cation and the possible mechanism,and their current clinical application as well.The current proceedings may help develope early diagnostic strategy and therapeutic treatment with BMP-7 as a new molecular marker and potential drug target.The expec-tation could achieve early prevention and intervention of vascular calcification and improve poor prognosis on patients.
9.Mechanism of Chaijin JieYu Anshen formula regulating synaptic plasticity of hippocampal neurons in insomnia-concomitant depression rats based on HDAC5/MEF2C pathway
Ting-Ting REN ; Yu-Hong WANG ; Ying-Juan TANG ; Song YANG ; Hai-Peng GUO ; Ting-Ting WANG ; Ying HE ; Ping LI ; Hong-Qing ZHAO ; Zi-Yang ZHOU ; Man-Shu ZOU
Chinese Pharmacological Bulletin 2024;40(7):1248-1257
Aim To investigate the mechanisms of Chaijin JieYu Anshen formula modulating the depres-sive behaviors and the synaptic plasticity of hippocam-pal neurons in insomnia-concomitant depression rats based on the histone deacetylase 5(HDAC5)/myocyte enhancer factor 2C(MEF2C)pathway.Methods A rat model of insomnia-concomitant depression was es-tablished by PCPA injection combined with chronic un-predictable mild stress(CUMS),and the experiment was divided into the control group,the model group,the high,medium and low dose group of Chaijin JieYu Anshen formula,and the positive drug group.The de-pression of rats was evaluated by sugar-water prefer-ence test,open field test and morris water maze.The levels of 5-hydroxytryptamine(5-HT)and dopamine(DA)in serum were measured by enzyme linked im-munosorbent assay(ELISA).The pathological damage of hippocampal neurons was observed by HE staining and Nissl staining.The damage of dendritic spines of hippocampal neurons was observed by Golgi staining,and the levels of HDAC5,MEF2C,postsynaptic densi-ty-95(PSD-95)and synaptophysin 1(SYN1)in hip-pocampus were measured by Western blot,immunohis-tochemistry and immunofluorescence.Results Com-pared with the model group,the Chaijin JieYu Anshen formula could increase the sugar-water preference rate of the model rats,reduce the immobility time in the open field experiment,increase the total activity dis-tance,shorten the evasion latency in the localization navigation experiment,and prolong the residence time in the quadrant where the platform was located in the space exploration experiment(P<0.05,P<0.01).Moreover,the Chaijin JieYu Anshen formula improved the hippocampal neuron and dendritic spine damage and increase the dendritic branch length and dendritic spine density of hippocampal neurons(P<0.01,P<0.01),restore the serum levels of 5-HT and DA in insomnia-concomitant depression rats(P<0.05,P<0.01),down-regulate the HDAC5 protein,and up-regulate the expression of MEF2C,PSD-95,and SYN1 protein(P<0.05,P<0.01 or P<0.001).Conclusions Chaijin JieYu Anshen formula may alle-viate the depression-like behavior of model rats by re-ducing the expression of HDAC5 protein,thus deregu-lating the inhibition of transcription factor MEF2C,promoting the expression of PSD-95 and SNY1 protein,and exerting a protective effect on hippocampal neurons and synapses.
10.Effect of berberine on regulating NF-κB p65/TGF-β1/CTGF signaling pathway in reducing renal fibrosis injury in mice
Guang-Yao LI ; Jia-Min LIANG ; Meng-Tong JIN ; Duan XI ; Peng LIU ; Peng WANG ; Rui-Hua WANG ; Qing-Qing LIU
Chinese Pharmacological Bulletin 2024;40(11):2042-2047
Aim To investigate the protective effect of berberine(BBR)on mice with unilateral ureteral obstr-uction(UUO)and explore its mechanism.Methods C57BL/6 mice were randomly divided into the sham group,UUO group,and BBR treatment groups(50,100 and 200 mg·kg-1),with eight mice in each group.Except the sham group,the other groups were subjected to left ureteral ligation to establish the UUO model.Af-ter modeling,the mice in the sham and UUO groups were fed normal saline,and the mice in the BBR treat-ment groups were fed(50,100,200)mg·kg-1 BBR by gavage for 14 days,respectively.Biochemical analy-zer was employed to detect the levels of serum creati-nine(Scr)and blood urea nitrogen(BUN).HE,Mas-son,TUNEL and immunohistochemical staining were used to observe the pathological changes of renal tis-sue.ELISA was employed to detect the expression of pro-inflammatory cytokines in renal tissue homogenate.Western blot was used to detect the protein levels of NF-κB p65,TGF-β1 and CTGF in mouse kidney.Re-sults Compared with the UUO group,the levels of Scr and BUN in the BBR group were significantly reduced.Renal injury and interstitial fibrosis were alleviated.The expression of pro-inflammatory cytokines decreased in kidney.The expression of NF-κB p65,TGF-β1 and CTGF decreased.All results showed some degree of dose dependence.Conclusion Berberine has a sig-nificant protective effect on unilateral ureteral obstruc-tion mice,and the mechanism may be that BBR has the potential to inhibit NF-κB p65/TGF-β1/CTGF signa-ling pathway,thus reducing renal inflammation and fi-brosis.

Result Analysis
Print
Save
E-mail