1.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Percutaneous coronary intervention vs . medical therapy in patients on dialysis with coronary artery disease in China.
Enmin XIE ; Yaxin WU ; Zixiang YE ; Yong HE ; Hesong ZENG ; Jianfang LUO ; Mulei CHEN ; Wenyue PANG ; Yanmin XU ; Chuanyu GAO ; Xiaogang GUO ; Lin CAI ; Qingwei JI ; Yining YANG ; Di WU ; Yiqiang YUAN ; Jing WAN ; Yuliang MA ; Jun ZHANG ; Zhimin DU ; Qing YANG ; Jinsong CHENG ; Chunhua DING ; Xiang MA ; Chunlin YIN ; Zeyuan FAN ; Qiang TANG ; Yue LI ; Lihua SUN ; Chengzhi LU ; Jufang CHI ; Zhuhua YAO ; Yanxiang GAO ; Changan YU ; Jingyi REN ; Jingang ZHENG
Chinese Medical Journal 2025;138(3):301-310
BACKGROUND:
The available evidence regarding the benefits of percutaneous coronary intervention (PCI) on patients receiving dialysis with coronary artery disease (CAD) is limited and inconsistent. This study aimed to evaluate the association between PCI and clinical outcomes as compared with medical therapy alone in patients undergoing dialysis with CAD in China.
METHODS:
This multicenter, retrospective study was conducted in 30 tertiary medical centers across 12 provinces in China from January 2015 to June 2021 to include patients on dialysis with CAD. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. Secondary outcomes included all-cause death, the individual components of MACE, and Bleeding Academic Research Consortium criteria types 2, 3, or 5 bleeding. Multivariable Cox proportional hazard models were used to assess the association between PCI and outcomes. Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were performed to account for potential between-group differences.
RESULTS:
Of the 1146 patients on dialysis with significant CAD, 821 (71.6%) underwent PCI. After a median follow-up of 23.0 months, PCI was associated with a 43.0% significantly lower risk for MACE (33.9% [ n = 278] vs . 43.7% [ n = 142]; adjusted hazards ratio 0.57, 95% confidence interval 0.45-0.71), along with a slightly increased risk for bleeding outcomes that did not reach statistical significance (11.1% vs . 8.3%; adjusted hazards ratio 1.31, 95% confidence interval, 0.82-2.11). Furthermore, PCI was associated with a significant reduction in all-cause and cardiovascular mortalities. Subgroup analysis did not modify the association of PCI with patient outcomes. These primary findings were consistent across IPTW, PSM, and competing risk analyses.
CONCLUSION
This study indicated that PCI in patients on dialysis with CAD was significantly associated with lower MACE and mortality when comparing with those with medical therapy alone, albeit with a slightly increased risk for bleeding events that did not reach statistical significance.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Artery Disease/drug therapy*
;
Retrospective Studies
;
Renal Dialysis/methods*
;
Middle Aged
;
Aged
;
China
;
Proportional Hazards Models
;
Treatment Outcome
4.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
5.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
6.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
7.Material basis and mechanism of action of Arisaematis Rhizoma Preparatum in treatment of chronic obstructive pulmonary disease based on animal experiments, UPLC Q-Exactive Orbitrap MS, and network pharmacology.
Lin CHU ; Shao-Qing ZHU ; Zi-Xuan YANG ; Wei WANG ; Huan YANG
China Journal of Chinese Materia Medica 2025;50(7):1792-1802
This study investigates the material basis and mechanism of Arisaematis Rhizoma Preparatum in the treatment of chronic obstructive pulmonary disease(COPD) using animal experiments, component analysis, network pharmacology, and molecular docking. A mouse model of COPD was constructed by cigarette smoke and lipopolysaccharide(LPS). Blood gas analysis was performed to measure the pH and partial pressure of carbon dioxide(PCO_2) in the blood of the mice. Lung tissue sections were analyzed using HE staining, and the effects of Arisaematis Rhizoma Preparatum water extract on inflammatory factors(TNF-α, IL-6, and IL-1β) and the PI3K/AKT signaling pathway in the lung tissue of COPD model mice were studied by qPCR and Western blot. The composition of the Arisaematis Rhizoma Preparatum water extract was analyzed using UPLC Q-Exactive Orbitrap MS. The SwissTargetPrediction database was used to predict the targets of the chemical components in Arisaematis Rhizoma Preparatum. GeneCards, OMIM, TTD, PharmGKB and DrugBank disease databases were used to screen for COPD targets, and the potential targets of Arisaematis Rhizoma Preparatum in treating COPD were identified. A protein-protein interaction(PPI) network of intersection targets was constructed and analyzed using the STRING database and Cytoscape 3.9.0, and core genes were screened. GO functional analysis and KEGG pathway enrichment analysis were performed using R language, and molecular docking verification was conducted using AutoDock Vina software. The results of the animal experiments showed that Arisaematis Rhizoma Preparatum water extract improved pulmonary ventilation function in COPD model mice, reduced lung inflammatory cells, decreased alveolar cavities, and improved lung tissue condition. The levels of inflammatory factors TNF-α, IL-6 and IL-1β were decreased, and the phosphorylation levels of PI3K and AKT were inhibited. Fifty-two chemical components were identified from Arisaematis Rhizoma Preparatum, and 440 intersection targets related to COPD were found. Nine key components were screened, including hydroxyphenylethylamine, L-tyrosine, L-tyrosyl-L-alanine, 3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid, methyl azelate, zingerone, 6-gingerol, linoleamide, and linoleoyl ethanolamine. Five core targets were identified, including AKT1, TNF, STAT3, ESR1, and IL1B. The PI3K/AKT pathway was identified as the key pathway for the treatment of COPD with Arisaematis Rhizoma Preparatum. Molecular docking results showed that 75% of the binding energies of key components and core targets were less than-5 kcal·mol~(-1), indicating good binding affinity. In conclusion, Arisaematis Rhizoma Preparatum may improve pulmonary ventilation function, enhance lung pathological morphology, and reduce pulmonary inflammation in COPD model mice by inhibiting the PI3K/AKT signaling pathway and downregulating TNF-α, IL-6, and IL-1β inflammatory factors. The material basis may be associated with L-tyrosyl-L-alanine, 3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid, zingerone and 6-gingerol, and AKT1 and TNF may be the primary targets.
Animals
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rhizome/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Chromatography, High Pressure Liquid
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Lung/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Interleukin-6/immunology*
8.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
9.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
10.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail