1.Research advances in traditional Chinese medicine for the treatment of hepatocellular carcinoma by regulating immune cells
Lijuan LONG ; Zongyu WANG ; Yali ZHAO ; Chuanfu QIN ; Hua QIU
Journal of Clinical Hepatology 2025;41(2):349-358
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high mortality rate, an insidious onset, and complex pathological mechanisms. In the tumor microenvironment, tumor-promoting immune cells protect tumor cells from immune attacks, while dysfunction of anti-tumor immune cells causes the inhibition of immune response, thereby leading to the continuous deterioration of cancer. In recent years, traditional Chinese medicine has shown good efficacy in the treatment of HCC, and it can inhibit the proliferation and metastasis of cancer cells by regulating immune cells. By analyzing related articles in China and globally, this article summarizes how immune cells affect the progression of HCC through the immunosuppressive pathway and how traditional Chinese medicine exerts an anti-HCC effect by regulating immune cells, in order to provide theoretical basis and reference for optimizing the treatment of HCC.
3.Deep learning algorithms for intelligent construction of a three-dimensional maxillofacial symmetry reference plane.
Yujia ZHU ; Hua SHEN ; Aonan WEN ; Zixiang GAO ; Qingzhao QIN ; Shenyao SHAN ; Wenbo LI ; Xiangling FU ; Yijiao ZHAO ; Yong WANG
Journal of Peking University(Health Sciences) 2025;57(1):113-120
OBJECTIVE:
To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.
METHODS:
Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm. These were divided into a training set (1 400 cases), a validation set (200 cases), and an internal test set (200 cases). The MDGR-Net model constructed feature vectors for key points in both original and mirror point clouds (X, Y), established correspondences between key points in the X and Y point clouds based on these feature vectors, and calculated rotation and translation matrices using singular value decomposition (SVD). Utilizing the MDGR-Net model, intelligent registration of the original and mirror point clouds were achieved, resulting in a combined point cloud. The principal component analysis (PCA) algorithm was applied to this combined point cloud to obtain the symmetry reference plane associated with the MDGR-Net methodology. Model evaluation for the translation and rotation matrices on the test set was performed using the coefficient of determination (R2). Angle error evaluations for the three-dimensional maxillofacial symmetry reference planes were constructed using the MDGR-Net-associated method and the "ground truth" iterative closest point (ICP)-associated method were conducted on 200 cases in the internal test set and 40 cases in an external test set.
RESULTS:
Based on testing with the three-dimensional maxillofacial data from the 200-case internal test set, the MDGR-Net model achieved an R2 value of 0.91 for the rotation matrix and 0.98 for the translation matrix. The average angle error on the internal and external test sets were 0.84°±0.55° and 0.58°±0.43°, respectively. The construction of the three-dimensional maxillofacial symmetry reference plane for 40 clinical cases took only 3 seconds, with the model performing optimally in the patients with skeletal Class Ⅲ malocclusion, high angle cases, and Angle Class Ⅲ orthodontic patients.
CONCLUSION
This study proposed the MDGR-Net association method based on intelligent point cloud registration as a novel solution for constructing three-dimensional maxillofacial symmetry reference planes in clinical dental applications, which can significantly enhance diagnostic and therapeutic efficiency and outcomes, while reduce expert dependence.
Humans
;
Deep Learning
;
Algorithms
;
Imaging, Three-Dimensional/methods*
;
Male
;
Female
;
Maxilla/diagnostic imaging*
;
Adult
4.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
5.Suppression of Hepatocellular Carcinoma through Apoptosis Induction by Total Alkaloids of Gelsemium elegans Benth.
Ming-Jing JIN ; Yan-Ping LI ; Huan-Si ZHOU ; Yu-Qian ZHAO ; Xiang-Pei ZHAO ; Mei YANG ; Mei-Jing QIN ; Chun-Hua LU
Chinese journal of integrative medicine 2025;31(9):792-801
OBJECTIVE:
To evaluate the anti-hepatocellular carcinoma (HCC) activity of total alkaloids from Gelsemium elegans Benth. (TAG) in vivo and in vitro and to elucidate their potential mechanisms of action through transcriptomic analysis.
METHODS:
TAG extraction was conducted, and the primary components were quantified using high-performance liquid chromatography (HPLC). The effects of TAG (100, 150, and 200 µg/mL) on various tumor cells, including SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116, were assessed. Effects of TAG on HCC proliferation and apoptosis were detected by colony formation assays and cell stainings. Caspase-3, Bcl-2, and Bax protein levels were detected by Western blotting. In vivo, a tumor xenograft model was developed using H22 cells. Totally 40 Kunming mice were randomly assigned to model, cyclophosphamide (20 mg/kg), TAG low-dose (TAG-L, 0.5 mg/kg), and TAG high-dose (TAG-H, 1 mg/kg) groups, with 10 mice in each group. Tumor volume, body weight, and tumor weight were recorded and compared during 14-day treatment. Immune organ index were calculated. Tissue changes were oberseved by hematoxylin and eosin staining and immunohistochemistry. Additionally, transcriptomic and metabolomic analyses, as well as quatitative real-time polymerase chain reaction (RT-qPCR), were performed to detect mRNA and metabolite expressions.
RESULTS:
HPLC successfully identified the components of TAG extraction. Live cell imaging and analysis, along with cell viability assays, demonstrated that TAG inhibited the proliferation of SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116 cells. Colony formation assays, Hoechst 33258 staining, Rhodamine 123 staining, and Western blotting revealed that TAG not only inhibited HCC proliferation but also promoted apoptosis (P<0.05). In vivo experiments showed that TAG inhibited the growth of solid tumors in HCC in mice (P<0.05). Transcriptomic analysis and RT-qPCR indicated that the inhibition of HCC by TAG was associated with the regulation of the key gene CXCL13.
CONCLUSION
TAG inhibits HCC both in vivo and in vitro, with its inhibitory effect linked to the regulation of the key gene CXCL13.
Animals
;
Apoptosis/drug effects*
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Humans
;
Alkaloids/therapeutic use*
;
Gelsemium/chemistry*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Mice
;
Xenograft Model Antitumor Assays
6.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
7.Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability.
Chenxu WEI ; Zongan LI ; Xiaoyun LIANG ; Yuwei ZHAO ; Xingyu ZHU ; Haibing HUA ; Guobao CHEN ; Kunming QIN ; Zhipeng CHEN ; Changcan SHI ; Feng ZHANG ; Weidong LI
Journal of Zhejiang University. Science. B 2025;26(9):863-880
Bone repair remains an important target in tissue engineering, making the development of bioactive scaffolds for effective bone defect repair a critical objective. In this study, β-tricalcium phosphate (β-TCP) scaffolds incorporated with processed pyritum decoction (PPD) were fabricated using three-dimensional (3D) printing-assisted freeze-casting. The produced composite scaffolds were evaluated for their mechanical strength, physicochemical properties, biocompatibility, in vitro pro-angiogenic activity, and in vivo efficacy in repairing rabbit femoral defects. They not only demonstrated excellent physicochemical properties, enhanced mechanical strength, and good biosafety but also significantly promoted the proliferation, migration, and aggregation of pro-angiogenic human umbilical vein endothelial cells (HUVECs). In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site, with the β-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1 (Notch1), vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and osteopontin (OPN). Overall, the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo. The incorporation of PPD notably promoted the angiogenic-osteogenic coupling, thereby accelerating bone repair, which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.
Calcium Phosphates/chemistry*
;
Animals
;
Bone Regeneration
;
Rabbits
;
Tissue Scaffolds
;
Printing, Three-Dimensional
;
Humans
;
Human Umbilical Vein Endothelial Cells
;
Neovascularization, Physiologic
;
Osteogenesis
;
Tissue Engineering/methods*
;
Biomimetic Materials
;
Cell Proliferation
;
Angiogenesis
8.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
9.Identification, expression and protein interaction analysis of Aux/IAA and ARF gene family in Senna tora L.
Zhao FENG ; Shi-peng LIU ; Rui-hua LÜ ; Rui-hua LÜ ; Xiao-chen HU ; Ming-ying ZHANG ; Ren-jun MAO ; Gang ZHANG
Acta Pharmaceutica Sinica 2024;59(3):751-763
The early response of plant auxin gene family
10.Two new dalbergiphenols from Zhuang medicine Dalbergia rimosa Roxb
Cheng-sheng LU ; Wei-yu WANG ; Min ZHU ; Si-si QIN ; Zhao-hui LI ; Chen-yan LIANG ; Xu FENG ; Jian-hua WEI
Acta Pharmaceutica Sinica 2024;59(2):418-423
Twelve compounds were isolated from the ethyl acetate fraction of the 80% aqueous ethanol extract of the roots and stems of

Result Analysis
Print
Save
E-mail