1.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
2.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
3.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
4.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
5.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
6.Three-dimensional printed scaffolds with sodium alginate/chitosan/mineralized collagen for promoting osteogenic differentiation.
Bo YANG ; Xiaojie LIAN ; Haonan FENG ; Tingwei QIN ; Song LYU ; Zehua LIU ; Tong FU
Journal of Biomedical Engineering 2025;42(5):1036-1045
The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.
Chitosan/chemistry*
;
Alginates/chemistry*
;
Tissue Scaffolds/chemistry*
;
Printing, Three-Dimensional
;
Osteogenesis
;
Collagen/chemistry*
;
Cell Differentiation
;
Animals
;
Tissue Engineering/methods*
;
Cell Proliferation
;
Biocompatible Materials
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
7.Clinical Characteristics and Prognosis of Primary Pulmonary Lymphoma.
You-Fan FENG ; Yuan-Yuan ZHANG ; Xiao Fang WEI ; Qi-Ke ZHANG ; Li ZHAO ; Xiao-Qin LIANG ; Yuan FU ; Fei LIU ; Yang-Yang ZHAO ; Xiu-Juan HUANG ; Qing-Fen LI
Journal of Experimental Hematology 2025;33(2):387-392
OBJECTIVE:
To investigate the clinical characteristics and prognosis of primary pulmonary lymphoma (PPL).
METHODS:
The clinical data of 17 patients with PPL admitted to Gansu Provincial Hospital from January 2013 to June 2023 were collected, and their clinical characteristics and prognosis were retrospectively analyzed and summarized.
RESULTS:
The median age of the 17 patients was 56 (29-73) years old. There were 8 males and 9 females. According to Ann Arbor staging system, there were 9 patients with stage I-II and 8 patients with stage III-IV. There were 14 patients with IPI score of 0-2 and 3 patients with IPI score of 3-4. All 17 patients had symptoms at the initial diagnosis, most of the first symptoms were cough, and 6 patients had B symptoms.Among the 17 patients, there were 8 cases of diffuse large B-cell lymphoma (DLBCL), 5 cases of mucosa-associated lymphoid tissue (MALT) lymphoma, 1 case of gray zone lymphoma (GZL), and 3 cases of Hodgkin's lymphoma (HL). 15 patients received chemotherapy, of which 3 cases received autologous hematopoietic stem cell transplantation(ASCT) and 3 cases received radiotherapy; 2 patients did not receive treatment. The median number of chemotherapy courses was 6(2-8). The short-term efficacy was evaluated, 12 patients achieved complete remission (CR) and 3 patients achieved partial remission (PR). The age, pathological subtype, sex, Ann Arbor stage, β2-microglobulin(β2-MG) level, lactate dehydrogenase(LDH) level were not correlated with CR rate (P >0.05), while IPI score was correlated with recent CR rate (P < 0.05 ). The median follow-up time was 31(2-102) months. One of the 12 CR patients died of COVID-19, and the rest survived. Among the 3 patients who did not reach CR, 1 died after disease progression, while the other 2 survived. One of the 2 untreated patients died one year after diagnosis. Both the median progression-free survival (PFS) time and overall survival (OS) time of the 17 patients were both 31 (2-102) months.
CONCLUSION
The incidence of PPL is low, and the disease has no specific clinical manifestations, which is easily missed and misdiagnosed. The pathological subtypes are mainly MALT lymphoma and DLBCL, and the treatment is mainly combined chemotherapy. The IPI score is related to the treatment efficacy.
Humans
;
Middle Aged
;
Male
;
Female
;
Adult
;
Prognosis
;
Aged
;
Lung Neoplasms/therapy*
;
Retrospective Studies
;
Neoplasm Staging
;
Lymphoma/therapy*
;
Lymphoma, Large B-Cell, Diffuse
8.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
9.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
10.Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases.
Jun-Jie LI ; Hong MEI ; Xin-Xin LIU ; Kun YU ; Bang-Hai FENG ; Bao FU ; Song QIN
Acta Academiae Medicinae Sinicae 2025;47(4):601-610
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,with a high mortality rate.Sirtuin 3,a deacetylase within mitochondria,plays an important regulatory role in cellular metabolism,oxidative stress,and inflammatory responses.In recent years,significant progress has been made in the study of the function and regulatory role of sirtuin 3 in sepsis-related diseases.Research has shown that sirtuin 3 can alleviate organ damage caused by sepsis by regulating mitochondrial function,reducing oxidative stress,and inhibiting inflammatory responses.The specific mechanisms include the regulation of mitochondrial bioenergetics,activation of antioxidant enzyme systems,and inhibition of inflammatory mediator expression.In addition,sirtuin 3 plays a protective role in the pathological process of sepsis by interacting with multiple signaling pathways.This article summarizes the functions and regulatory mechanisms of sirtuin 3 in various sepsis-related diseases,aiming to provide new targets and strategies for the prevention and treatment of sepsis in the future.
Sepsis/metabolism*
;
Sirtuin 3/physiology*
;
Humans
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail