1.Pathways Related to Osteoporosis Treatment with Active Ingredients of Scutellaria Baicalensis: A Review
Jianqiang DU ; Wenxiu QIN ; Xuesong YIN ; Dan ZHAO ; Zhicheng PAN ; Qi ZHANG ; Enpeng GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):325-330
With the aging of the global population, osteoporosis (OP) is becoming a major public health concern worldwide. Currently, the commonly used anti-osteoporosis drugs in clinical practice have limited application due to many side effects. Therefore, developing more effective and safer strategies for the prevention and treatment of OP has become a research focus in this field. In recent years, the clinical efficacy and advantages of traditional Chinese medicine (TCM) in treating OP have been gradually recognized. With the deepening pharmacological research on TCM for OP prevention and treatment, it is found that the active ingredients of Scutellaria baicalensis can promote bone formation or inhibit bone resorption by regulating signaling pathways, including Wnt/β-catenin, osteoprotegerin (OB)/receptor activator of nuclear factor-κB ligand (RANKL)/RANK (OPG/RANKL/RANK), and bone morphogenetic protein 2 (BMP-2)/Smad, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). However, existing research on active ingredients of S. baicalensis for OP treatment is scattered, making it difficult for scholars to gain a systematic understanding of its research and application. This review summarized the literature on the active ingredients of S. baicalensis in OP treatment worldwide, clarified their mechanisms of action, and explored some issues, providing references for the integration of TCM in OP prevention and treatment.
2.Pathways Related to Osteoporosis Treatment with Active Ingredients of Scutellaria Baicalensis: A Review
Jianqiang DU ; Wenxiu QIN ; Xuesong YIN ; Dan ZHAO ; Zhicheng PAN ; Qi ZHANG ; Enpeng GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):325-330
With the aging of the global population, osteoporosis (OP) is becoming a major public health concern worldwide. Currently, the commonly used anti-osteoporosis drugs in clinical practice have limited application due to many side effects. Therefore, developing more effective and safer strategies for the prevention and treatment of OP has become a research focus in this field. In recent years, the clinical efficacy and advantages of traditional Chinese medicine (TCM) in treating OP have been gradually recognized. With the deepening pharmacological research on TCM for OP prevention and treatment, it is found that the active ingredients of Scutellaria baicalensis can promote bone formation or inhibit bone resorption by regulating signaling pathways, including Wnt/β-catenin, osteoprotegerin (OB)/receptor activator of nuclear factor-κB ligand (RANKL)/RANK (OPG/RANKL/RANK), and bone morphogenetic protein 2 (BMP-2)/Smad, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). However, existing research on active ingredients of S. baicalensis for OP treatment is scattered, making it difficult for scholars to gain a systematic understanding of its research and application. This review summarized the literature on the active ingredients of S. baicalensis in OP treatment worldwide, clarified their mechanisms of action, and explored some issues, providing references for the integration of TCM in OP prevention and treatment.
3.Exploration of radiotherapy as a combined treatment modality with in situ vaccines in the treatment of advanced soft tissue sarcomas
TAN Siyi, ; WANG Xiaolu ; WANG Qin ; DU Shiyao ; YIN Fangtao ; YANG Yiqi ; SUN Wu ; LIU Juan ; ZHOU Xia ; LIU Baorui, ; LI Rutian
Chinese Journal of Cancer Biotherapy 2025;32(4):418-424
[摘 要] 目的:评估放疗作为原位疫苗的联合治疗模式在晚期软组织肉瘤(STS)患者中的有效性和安全性。方法:回顾性分析2020年12月至2024年9月期间在南京大学医学院附属鼓楼医院肿瘤中心接受联合治疗模式的12例晚期STS患者的临床资料。12例患者均接受了联合治疗。放疗主要以大分割为主。靶向治疗:安罗替尼10例、阿帕替尼2例。免疫治疗以PD-1抗体为主。主要研究终点为疾病控制率(DCR),次要研究终点为客观有效率(ORR)及安全性。结果:接受联合治疗的12例STS患者中有0例CR,4例PR,7例SD,1例PD。ORR为33%,DCR为91.7%,其中靶病灶的DCR为100%。12例患者中,9例出现Ⅰ~Ⅱ级不良反应。最常发生的血液学不良反应是贫血(6例)、肝功能检查结果异常(3例)。最常发生的非血液学不良反应是尿蛋白(5例)、高血压(4例)、甲状腺功能异常(3例)、厌食(3例)、恶心呕吐(2例);仅2例发生Ⅲ级血液毒性,有1例发生Ⅲ级气胸。结论:放疗作为原位疫苗的联合治疗模式在晚期STS患者中展现出较高的DCR,且未出现严重不良反应。该联合治疗模式具有良好的有效性与安全性。
4.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
5.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*
6.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
7.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
8.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
9.Synergistic Activation of LEPR and ADRB2 Induced by Leptin Enhances Reactive Oxygen Specie Generation in Triple-Negative Breast Cancer Cells
Chang LIU ; Jing YU ; Yongjun DU ; Yu XIE ; Xiaofei SONG ; Chang LIU ; Yan YAN ; Yue WANG ; Junfang QIN
Cancer Research and Treatment 2025;57(2):457-477
Purpose:
Leptin interacts not only with leptin receptor (LEPR) but also engages with other receptors. While the pro-oncogenic effects of the adrenergic receptor β2 (ADRB2) are well-established, the role of leptin in activating ADRB2 in triple-negative breast cancer (TNBC) remains unclear.
Materials and Methods:
The pro-carcinogenic effects of LEPR were investigated using murine TNBC cell lines, 4T1 and EMT6, and a tumor-bearing mouse model. Expression levels of LEPR, NADPH oxidase 4 (NOX4), and ADRB2 in TNBC cells and tumor tissues were analyzed via western blot and quantitative real-time polymerase chain reaction. Changes in reactive oxygen species (ROS) levels were assessed using flow cytometry and MitoSox staining, while immunofluorescence double-staining confirmed the co-localization of LEPR and ADRB2.
Results:
LEPR activation promoted NOX4-derived ROS and mitochondrial ROS production, facilitating TNBC cell proliferation and migration, effects which were mitigated by the LEPR inhibitor Allo-aca. Co-expression of LEPR and ADRB2 was observed on cell membranes, and bioinformatics data revealed a positive correlation between the two receptors. Leptin activated both LEPR and ADRB2, enhancing intracellular ROS generation and promoting tumor progression, which was effectively countered by a specific ADRB2 inhibitor ICI118551. In vivo, leptin injection accelerated tumor growth and lung metastases without affecting appetite, while treatments with Allo-aca or ICI118551 mitigated these effects.
Conclusion
This study demonstrates that leptin stimulates the growth and metastasis of TNBC through the activation of both LEPR and ADRB2, resulting in increased ROS production. These findings highlight LEPR and ADRB2 as potential biomarkers and therapeutic targets in TNBC.
10.Research progress on nano-antimicrobial materials in root canal therapy
WANG Yiyi ; QIN Lu ; JIA Yanmin ; DU Xushuo ; LIU Fei ; WANG Suping
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):699-708
The efficacy of root canal therapy, as a core intervention for endodontic and periapical diseases, is highly dependent on the effectiveness of antimicrobial drugs. Although traditional drugs such as calcium hydroxide, chlorhexidine, and antibiotic pastes commonly used in the clinic play a role in preventing and controlling infections, they have obvious limitations. These drugs influence the mechanical properties of dentin, insufficiently solubilize necrotic tissues, and are susceptible to bacterial resistance, which makes achieving the desired effectiveness and safety difficult. Traditional macromolecular root canal drugs also face the challenge of the complexity of the root canal system. With the rapid development of material science in recent years, new antimicrobial agents have emerged. Metallic nanomaterials such as silver nanoparticles and zinc oxide nanoparticles are widely used in the medical field due to their unique physicochemical properties and superior antimicrobial properties. Chitosan nanoparticles have superior biosafety, calcium hydroxide nanoparticles compensate for the limitations of traditional calcium hydroxide formulations, and quaternary ammonium polyethyleneimine nanoparticles can confer antimicrobial properties to existing oral materials. Novel antimicrobial nanoparticles using nano-delivery systems, such as mesoporous calcium silicate and mesoporous silica, carry antimicrobial molecules with significant advantages in terms of anti-biofilm, biosafety, and promotion of tissue repair. Further, these agents reduce drug resistance, which improves prospects for application compared to traditional root canal disinfection drugs. The breakthrough of nanotechnology provides a novel direction for the innovation of root canal treatment drugs. Therefore, this paper reviews the research progress of nano-antimicrobial materials in root canal therapy.


Result Analysis
Print
Save
E-mail