1.Stress distribution on the maxilla when wearing the Twin-block appliance for Class Ⅱ malocclusion
Shuai LI ; Hua LIU ; Yonghui SHANG ; Yicong LIU ; Qihang ZHAO ; Wen LIU
Chinese Journal of Tissue Engineering Research 2025;29(5):881-887
BACKGROUND:The Twin-block orthodontic appliance is commonly used for the correction of Class Ⅱ malocclusion.Its mechanism of action in stimulating mandibular growth has been confirmed in many studies,but its impact on maxillary growth is not very clear. OBJECTIVE:By establishing a finite element model to analyze the stress distribution of the maxillary complex,surrounding bone sutures,and maxillary dentition in patients with Class Ⅱ malocclusion wearing Twin-block orthodontic appliances. METHODS:One patient with Class Ⅱ malocclusion who underwent orthodontic treatment at Qingdao Hospital/Qingdao Municipal Hospital of Shandong Rehabilitation University was selected.The bite force data of the patient when wearing the Twin-block orthodontic appliance was measured,and CBCT data were collected.A finite element model was established,including the maxillary complex,peripheral sutures,Twin-block orthodontic appliance,and maxillary dentition.ABAQUS software was used to simulate the stress distribution in the maxilla and maxillary dentition when the patient was wearing the Twin-block appliance. RESULTS AND CONCLUSION:The equivalent stress on the maxillary anterior teeth was significantly smaller than that on the posterior teeth,and the maximum equivalent stress on both sides of the teeth were 4.797 5 Mpa and 8.716 1 Mpa,respectively,which were located at the first premolar.The maximum displacements were presented at the maxillary incisors on both sides of the teeth,which were 0.080 5 mm and 0.081 0 mm,respectively.The maximum equivalent stress on the bone suture was 1.284 Mpa,which was mainly concentrated in the pterygopalatine suture and the frontal-maxillary suture on both sides,and there was almost no difference in the force of the rest of bone sutures;the maximum displacement of the bone suture was 0.07 mm,with the pterygopalatine suture having the largest displacement,followed by the frontal-maxillary suture.The maximal equivalent stress on the maxillary complex was 27.18 Mpa,which was mainly concentrated on both sides of the anterior pyriform foramen of the maxilla,around the nasofrontal suture and around the pterygopalatine suture at the posterior part of the jaws.The maximal displacement of the maxilla was 0.07 mm,which was mainly concentrated on the maxillary alveolar bone.All these findings show that the occlusal force acts on the maxillary complex through the Twin-block appliance,resulting in clockwise rotation of the maxilla and steepening of the dentition plane.Measures should be taken to compensate for this tendency,for example,by considering maxillary molar elongation and intrusion in the process of occlusion,which are not only able to flatten the occlusal plane,but facilitate the mandibular protraction,thereby further improving Class Ⅱ malocclusion orthodontic treatment.
2.Trends and sex disparities in the burden of urolithiasis in 204 countries and territories, 1990-2021.
Junjiong ZHENG ; Qihang ZHANG ; Jie ZHANG ; Yuhui YAO ; Li CHEN ; Yunfei LIU ; Yi SONG ; Tianxin LIN ; Guohua HE
Chinese Medical Journal 2025;138(16):1973-1983
BACKGROUND:
Urolithiasis is a widespread disease with a high prevalence worldwide. This study aims to evaluate the disease burden of urolithiasis and its trends from 1990 to 2021 globally, based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 database.
METHODS:
The numbers and age-standardized rates (ASRs) of incidence, disability-adjusted life years (DALYs), and mortality of urolithiasis were extracted from GBD 2021 to represent the disease burden. Joinpoint regression analyses were conducted to assess the temporal trends in the burden of urolithiasis. The male-to-female ASR ratio indices were used to evaluate sex disparities. Additionally, we explored the relationship between the ASR ratio and the sociodemographic index (SDI).
RESULTS:
The total numbers of incidence, DALY, and mortality of urolithiasis were 105,983,780 cases (95% uncertainty interval [UI] = 88,349,356-128,645,155 cases), 693,444 cases (95% UI = 567,765-850,490 cases), and 17,672 cases (95% UI = 13,932-21,241 cases), respectively, in 2021. There is an increasing trend in the number of these measures globally, whereas the ASRs have decreased over the past 30 years. The age-standardized incidence rate (ASIR) and age-standardized mortality rate (ASMR) were significantly higher in males than in females in 2021. The sex disparities in the age-standardized DALY rate (ASDR) and ASMR of urolithiasis were negatively correlated with the SDI. In 2021, the ASIR of urolithiasis was 964.70 (95% UI = 801.26-1175.09) per 100,000 people in China, which is much lower than the global average (1242.84 [95% UI = 1034.94-1506.99] per 100,000 people). Compared with the global average, a more pronounced decline in ASIR was observed in China from 1793.16 (1446.0-2235.14) in 1990 to 964.70 (801.26-1175.09) per 100,000 people in 2021.
CONCLUSIONS
Urolithiasis poses a significant healthcare burden worldwide. More robust global and national strategies are warranted to address the prevention and treatment, especially in low SDI countries and regions.
Humans
;
Urolithiasis/mortality*
;
Male
;
Female
;
Incidence
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Adult
;
Middle Aged
;
Risk Factors
;
Sex Factors
3.Regional adipose distribution and metabolically unhealthy phenotype in Chinese adults: evidence from China National Health Survey.
Binbin LIN ; Yaoda HU ; Huijing HE ; Xingming CHEN ; Qiong OU ; Yawen LIU ; Tan XU ; Ji TU ; Ang LI ; Qihang LIU ; Tianshu XI ; Zhiming LU ; Weihao WANG ; Haibo HUANG ; Da XU ; Zhili CHEN ; Zichao WANG ; Guangliang SHAN
Environmental Health and Preventive Medicine 2025;30():5-5
BACKGROUND:
The mechanisms distinguishing metabolically healthy from unhealthy phenotypes within the same BMI categories remain unclear. This study aimed to investigate the associations between regional fat distribution and metabolically unhealthy phenotypes in Chinese adults across different BMI categories.
METHODS:
This cross-sectional study involving 11833 Chinese adults aged 20 years and older. Covariance analysis, adjusted for age, compared the percentage of regional fat (trunk, leg, or arm fat divided by whole-body fat) between metabolically healthy and unhealthy participants. Trends in regional fat percentage with the number of metabolic abnormalities were assessed by the Jonckheere-Terpstra test. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated by logistic regression models. All analyses were performed separately by sex.
RESULTS:
In non-obese individuals, metabolically unhealthy participants exhibited higher percent trunk fat and lower percent leg fat compared to healthy participants. Additionally, percent trunk fat increased and percent leg fat decreased with the number of metabolic abnormalities. After adjustment for demographic and lifestyle factors, as well as BMI, higher percent trunk fat was associated with increased odds of being metabolically unhealthy [highest vs. lowest quartile: ORs (95%CI) of 1.64 (1.35, 2.00) for men and 2.00 (1.63, 2.46) for women]. Conversely, compared with the lowest quartile, the ORs (95%CI) of metabolically unhealthy phenotype in the highest quartile for percent arm and leg fat were 0.64 (0.53, 0.78) and 0.60 (0.49, 0.74) for men, and 0.72 (0.56, 0.93) and 0.46 (0.36, 0.59) for women, respectively. Significant interactions between BMI and percentage of trunk and leg fat were observed in both sexes, with stronger associations found in individuals with normal weight and overweight.
CONCLUSIONS
Trunk fat is associated with a higher risk of metabolically unhealthy phenotype, while leg and arm fat are protective factors. Regional fat distribution assessments are crucial for identifying metabolically unhealthy phenotypes, particularly in non-obese individuals.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Adipose Tissue
;
Body Fat Distribution
;
Body Mass Index
;
China/epidemiology*
;
Cross-Sectional Studies
;
Health Surveys
;
Phenotype
4.Probing the biological efficacy and mechanistic pathways of natural compounds in breast cancer therapy via the Hedgehog signaling pathway.
Yining CHENG ; Wenfeng ZHANG ; Qi SUN ; Xue WANG ; Qihang SHANG ; Jingyang LIU ; Yubao ZHANG ; Ruijuan LIU ; Changgang SUN
Journal of Pharmaceutical Analysis 2025;15(4):101143-101143
Breast cancer (BC) is one of the most prevalent malignant tumors affecting women worldwide, with its incidence rate continuously increasing. As a result, treatment strategies for this disease have received considerable attention. Research has highlighted the crucial role of the Hedgehog (Hh) signaling pathway in the initiation and progression of BC, particularly in promoting tumor growth and metastasis. Therefore, molecular targets within this pathway represent promising opportunities for the development of novel BC therapies. This study aims to elucidate the therapeutic mechanisms by which natural compounds modulate the Hh signaling pathway in BC. By conducting a comprehensive review of various natural compounds, including polyphenols, terpenes, and alkaloids, we reveal both common and unique regulatory mechanisms that influence this pathway. This investigation represents the first comprehensive analysis of five distinct mechanisms through which natural compounds modulate key molecules within the Hh pathway and their impact on the aggressive behaviors of BC. Furthermore, by exploring the structure-activity relationships between these compounds and their molecular targets, we shed light on the specific structural features that enable natural compounds to interact with various components of the Hh pathway. These novel insights contribute to advancing the development and clinical application of natural compound-based therapeutics. Our thorough review not only lays the groundwork for exploring innovative BC treatments but also opens new avenues for leveraging natural compounds in cancer therapy.
5.Role and mechanism of intestinal flora metabolites in obesity regulation
Qihang YANG ; Rui PU ; Ziyang CHEN ; Siyi LENG ; Yongjing SONG ; Hui LIU ; Guangyou DU
Chinese Journal of Tissue Engineering Research 2024;28(2):308-314
BACKGROUND:Gut microbiota is closely related to host energy balance and metabolism.The metabolites of intestinal flora can regulate the occurrence and development of obesity and can be a new target for the prevention and treatment of obesity. OBJECTIVE:To summarize the interaction between the intestinal flora and obesity,as well as the specific mechanism underlying regulation of obesity by metabolites of intestinal flora,thereby providing a new reference and basis for the prevention and treatment of obesity. METHODS:"Intestinal microbiota,intestinal bacteria,intestinal microbiota metabolites,short-chain fatty acids,bile acids,ipopolysaccharide,trimethylamine N-oxide,medium-chain fatty acids,tryptophan derivatives,obesity"were used as search terms in Chinese and English.Literature related to obesity from 1990 to 2022 was retrieved in PubMed and CNKI databases.According to inclusion and exclusion criteria,88 articles were finally selected. RESULTS AND CONCLUSION:Intestinal flora is closely related to the occurrence and development of obesity.For example,changes in the Firmicutes to Bacteroidetes ratio can be used as a biomarker for the diagnosis of obesity,and the occurrence of obesity can be delayed by the colonization of probiotics such as Bifidobacterium breve,Lactobacillus and Akkermansia.Intestinal flora is mainly mediated by the metabolites of intestinal flora to participate in the regulation of obesity.For example,short-chain fatty acid can regulate adipogenesis by regulating signaling pathways such as G protein-coupled receptors 41,43 and peroxisome proliferator-activated receptor γ,thus delaying the occurrence and development of obesity.Bile acids can increase insulin sensitivity and body energy expenditure by promoting the activation of G protein-coupled receptor 5 and farnesol X receptor.In addition,lipopolysaccharide,trimethylamine oxide,medium-chain fatty acids and tryptophan derivatives are also widely involved in the occurrence and development of obesity through various signaling pathways.Further studies have found that metabolites of the same bacterial community exert heterogeneous effects in the specific process of regulating obesity via different signaling pathways.For example,under the influence of high-fat diet,acetic acids can activate the parasympathetic nervous system,leading to hyperphagia and liver insulin resistance and thus accelerating the physiological course of obesity.
6.Conical beam CT measurement of alveolar bone structure remodeling in patients with skeletal class Ⅲ malocclusion after orthodontic-orthognathic treatment
Qihang ZHAO ; Xin LU ; Lei TONG ; Yonghui SHANG ; Shuai LI ; Wen LIU ; Jianhua ZHOU ; Rongtao YUAN ; Qingyuan GUO
Chinese Journal of Tissue Engineering Research 2024;28(23):3729-3735
BACKGROUND:Most of the studies on combined orthodontic-orthognathic treatment of skeletal class Ⅲ malocclusions have focused on the improvement of the patient's lateral appearance and recovery in the later stages of the treatment,while there are fewer studies observing the microcosmic nature of the alveolar bone remodeling of the lower anterior teeth. OBJECTIVE:To evaluate the therapeutic effect of lower anterior tooth decompensation and alveolar bone remodeling in patients with skeletal class Ⅲ malocclusion before and after orthodontic-orthognathic treatment based on oral X-ray lateral films and oral cone-beam CT. METHODS:From January 2015 to May 2023,15 patients with skeletal class Ⅲ malocclusion who underwent orthodontic-orthognathic surgery at Qingdao Hospital of Rehabilitation University were enrolled.All patients underwent lateral cephalography and cone beam computed tomography before and after treatment.Cephalometric measurement items related to the angle and line distance,lip/lingual bone cracking length(d-La/d-Li)and bone cracking/bone fenestration of the lower anterior teeth before and after treatment were measured. RESULTS AND CONCLUSION:Lateral X-ray films showed that the amount of alveolar bone remodeling after decompensation of the lower anterior teeth showed significant changes compared to before treatment.The root of the tooth moved significantly towards the center of the alveolar bone,and the specific data was closer to normal data,but there were still some differences compared with normal individuals.Based on the cone-beam CT measurement,the bone cracking/bone fenestration length and width of the alveolar bone were improved in almost all the teeth after orthodontic-orthognathic combined treatment,alveolar bone remodeling in some teeth even reached the level of healthy individuals.Before treatment,most patients often experienced bone fenestration/cracking on the lip/lingual side of the lower incisor due to compensatory tooth growth.However,during the preoperative orthodontic stage,decompensation triggered alveolar bone remodeling and significant changes in tooth angle.Preoperative orthodontic treatment caused the upper anterior teeth to retract and the lower anterior teeth to tilt and control the root,but the amount of decompensation before surgery was often insufficient.In the orthognathic surgery stage,the jaw was removed through the positioning guide plate,the maxilla moved forward,and the mandible retreated.During the postoperative orthodontic process,the effect of fine adjustment was better.Although there is a certain degree of recurrence trend in the position of teeth and jawbones,the postoperative orthodontic treatment is closer to the normal value.
7.Intestinal flora and osteoporosis and exercise intervention
Qihang YANG ; Rui PU ; Ziyang CHEN ; Siyi LENG ; Yongjing SONG ; Hui LIU ; Guangyou DU
Chinese Journal of Tissue Engineering Research 2024;28(26):4250-4256
BACKGROUND:Intestinal flora and its metabolites can participate in the pathological process of osteoporosis and play an important role in the diagnosis and treatment of osteoporosis.In addition,exercise can regulate the intestinal flora and thus affect the occurrence and development of osteoporosis. OBJECTIVE:To summarize the effects and mechanism of intestinal flora on osteoblasts,osteoclasts,and bone marrow mesenchymal stem cells,and the potential role of exercise-mediated intestinal flora in regulating osteoporosis. METHODS:"Intestinal flora,intestinal bacteria,metabolites of intestinal flora,bone metabolism,osteoporosis,exercise"were selected as keywords.Literatures from 1990 to 2023 were retrieved from PubMed and CNKI databases. RESULTS AND CONCLUSION:Changes in the abundance and diversity of intestinal flora and changes in the levels of intestinal flora metabolites such as trimethylamine oxide and bile acid can be used as biomarkers for the diagnosis of osteoporosis.The imbalance of intestinal flora can lead to intestinal barrier dysfunction and excessive production of lipopolysaccharides and trimethylamine oxide,induce the secretion of tumor necrosis factor-α and other inflammatory cytokines,activate the nuclear factor κB signaling pathway and aggravate oxidative stress,thus promoting osteoclast differentiation,inducing osteoblast apoptosis and affecting bone marrow mesenchymal cell migration.Remodeling intestinal flora homeostasis can inhibit inflammatory response,downregulate oxidative stress,inhibit osteoclast differentiation,promote osteoblast differentiation,and regulate the osteogenic migration of bone marrow mesenchymal cells to prevent and treat osteoporosis.Exercise can regulate intestinal flora homeostasis,improve intestinal barrier function,promote the secretion of short-chain fatty acids and bile acids,down-regulate serum lipopolysaccharide level,reduce oxidative stress,and then inhibit osteocyte apoptosis,inhibit osteoclast differentiation,promote osteoblast differentiation,and regulate osteocyte nutrient metabolism to exert the potential of preventing and treating osteoporosis.
8.Three-dimensional finite element study on the effect of posterior tooth forward movement on temporomandibular joint stress in orthodontic reduction patients
Yonghui SHANG ; Shuai LI ; Yicong LIU ; Qihang ZHAO ; Wen LIU
Chinese Journal of Tissue Engineering Research 2024;28(34):5516-5520
BACKGROUND:Temporomandibular joint disorders are closely related to high stress in temporomandibular joint.With the change of molar position after tooth reduction extraction,the establishment of new occlusal relationship often leads to the change of internal stress environment of the temporomandibular joint. OBJECTIVE:To analyze the stress distribution of temporomandibular joint in patients undergoing orthodontic reduction tooth extraction with different degrees of molar forward movement using the three-dimensional finite element model of the maxillary complex and temporomandibular joint. METHODS:A case of individual normal occlusal patient was selected from the Orthodontics Department of Qingdao Municipal Hospital,Shandong Province,and the finite element models of 1/3 anterior molar space(extraction of four second premolar teeth)before and after reduction and 2/3 anterior molar space(extraction of 4 second premolar teeth)after reduction were established based on the cone-beam CT and MRI data.ABAQUS software was used to analyze the stress distribution of various parts of the temporomandibular joint during the interposition of tooth tips. RESULTS AND CONCLUSION:The stress distribution of the condyle,articular disc,and osteoarticular fossa in the model before and after the reduction was basically the same.The stress of the condyle was mainly distributed in the anterior and apical part of the condyle,the stress of the articular disc was mainly distributed in the middle band and lateral part of the articular disc,and the stress of the articular fossa was mainly concentrated in the anterior and apical part of the articular fossa.However,the equivalent stress value of the condyle,articular disc and articular fossa decreased after reduction.After orthodontic reduction extraction,the equivalent stress values of condyle and articular disc in the 1/3 anterior molar space model were smaller than those in the 2/3 anterior molar space model.From the perspective of biomechanics,orthodontic reduction extraction can reduce the stress of the temporomandibular joint and provide a good biomechanical environment.
9.Microsurgical efficacy of large primary intracranial solitary fibrous tumor and influencing factors for prognoses
Lidong CHENG ; Qihang PAN ; Weihua LIU ; Wei HUANG ; Hongtao ZHU ; Yixuan MA ; Jun LI
Chinese Journal of Neuromedicine 2024;23(7):698-704
Objective:To investigate the microsurgical efficacy of large primary intracranial solitary fibrous tumor and influencing factors for its prognoses.Methods:From January 2010 to December 2022, 47 patients with large primary intracranial solitary fibrous tumor admitted to and accepted microsurgery in Department of Neurosurgery, Wuhan Central Hospital and Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, were enrolled. The clinical data, microsurgical efficacy and follow-up results of these patients were retrospectively analyzed, and influencing factors for total resection and prognoses were determined.Results:Thirty-two patients had tumor within the supratentorial region and 15 in the mandibular region, including 24 with sinus involved tumor. According to 2021 WHO Classification of Tumors of the Central Nervous System, 5 patients (10.6%) had grading 1, 32 (68.1%) grading 2, and 10 (21.3%) grading 3. Total resection was achieved in 31 patients (66.0%) and subtotal resection in 16 patients (34.0%). Postoperative complications, such as intraoperative hemorrhage, distant epidural hematoma and subcutaneous effusion, occurred in 7 patients (14.9%) and they were cured after secondary hematoma removal or conservative treatment; residual limb mobility disorder occurred in 3 patients, visual impairment in 3, and postoperative seizures in 2. Adjuvant radiotherapy was performed in 13 patients (27.7%). Follow-up was performed for (69.1±29.6) months and 29 patients (61.7%) had recurrent tumors (6 with intracranial and extracranial metastases and 4 deaths). Mean progression-free survival was (57.5±25.1) months; the 1-, 3-, and 5-year progression-free survival rates were 95.7%, 87.2%, and 59.6%, respectively. Sinus involvement was the independent influencing factor for total tumor resection; and total resection was an independent protective factor for progression-free survival for large primary intracranial solitary fibrous tumor ( HR=4.291, 95% CI: 1.555-11.838, P=0.005). Conclusion:Patients with large primary intracranial solitary fibrous tumor have a high recurrent risk after surgery; and gross-total resection should be strived to prevent tumor recurrence.
10.Advances in Cardiovascular Biomechanics and Mechanobiology Research in 2022
Qihang KONG ; Junteng ZHOU ; Xiaojing LIU
Journal of Medical Biomechanics 2023;38(3):E420-E432
The cardiovascular system plays a crucial role in the entire organism. It performs many important functions, such as providing organs and tissues with nutrients, hormones, delivering oxygen to cells, and maintaining physiological temperature. For a long time, accurately identifying the nonlinear and anisotropic mechanical properties of the vascular wall within the body has been regarded as a key challenge in cardiovascular biomechanics, as these properties are critical determinants of overall cardiac function. Currently, the roles of mechanical and tissue properties in cardiovascular diseases such as arterial aneurysms and atherosclerosis remain hot topics in both basic and clinical researches. This review aims to summarize the latest research advances in the field of cardiovascular biomechanics and mechanobiology in the year 2022. In terms of cardiovascular biomechanics, researchers focus on the structure, function, and pathophysiology of the cardiovascular system, and use experimental methods such as mechanical modeling to study these issues. These include studies about biomechanical properties of diseases such as atherosclerosis, arterial aneurysms, and myocardial infarction, as well as the development and testing of treatment methods based on dynamics of the cardiovascular system. In terms of mechanobiology, researchers explore mechanical properties of cardiovascular cells and extracellular matrix, including prediction of cell mechanical properties based on machine learning, studies of biological material mechanical properties, and the role of mechanical properties in cardiovascular cell phenotype changes. These research findings provide new ideas and methods for diagnosing and treating cardiovascular diseases and offer new insights into researches in biomechanics and mechanobiology fields.

Result Analysis
Print
Save
E-mail