1.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
2.Downregulation of ubiquitous microRNA-320 in hepatocytes triggers RFX1-mediated FGF1 suppression to accelerate MASH progression.
Liu YANG ; Wenjun LI ; Yingfen CHEN ; Ru YA ; Shengying QIAN ; Li LIU ; Yawen HAO ; Qiuhong ZAI ; Peng XIAO ; Seonghwan HWANG ; Yong HE
Acta Pharmaceutica Sinica B 2025;15(8):4096-4114
Metabolic dysfunction-associated steatohepatitis (MASH), a severe type of metabolic dysfunction-associated steatotic liver disease (MASLD), is a leading etiology of end-stage liver disease worldwide, posing significant health and economic burdens. microRNA-320 (miR-320), a ubiquitously expressed and evolutionarily conserved miRNA, has been reported to regulate lipid metabolism; however, whether and how miR-320 affects MASH development remains unclear. By performing miR-320 in situ hybridization with RNAscope, we observed a notable downregulation of miR-320 in hepatocytes during MASH, correlating with disease severity. Most importantly, miR-320 downregulation in hepatocytes exacerbated MASH progression as demonstrated that hepatocyte-specific miR-320 deficient mice were more susceptible to high-fat, high-fructose, high-cholesterol diet (HFHC) or choline-deficient, amino acid-defined, high-fat diet (CDAHFD)-induced MASH compared with control littermates. Conversely, restoration of miR-320 in hepatocytes ameliorated MASH-related steatosis and fibrosis by injection of adeno-associated virus 8 (AAV8) carrying miR-320 in different types of diet-induced MASH models. Mechanistic studies revealed that miR-320 specifically regulated fibroblast growth factor 1 (FGF1) production in hepatocytes by inhibiting regulator factor X1 (RFX1) expression. Notably, knockdown of Rfx1 in hepatocytes mitigated MASH by enhancing FGF1-mediated AMPK activation. Our findings underscore the therapeutic potential of hepatic miR-320 supplementation in MASH treatment by inhibiting RFX1-mediated FGF1 suppression.
3.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
4.Signatures of proteomics and glycoproteomics revealed liraglutide ameliorates MASLD by regulating specific metabolic homeostasis in mice.
Yuxuan CHEN ; Chendong LIU ; Qian YANG ; Jingtao YANG ; He ZHANG ; Yong ZHANG ; Yanruyu FENG ; Jiaqi LIU ; Lian LI ; Dapeng LI
Journal of Pharmaceutical Analysis 2025;15(11):101273-101273
Liraglutide (Lira), a glucagon-like peptide-1 (GLP-1) receptor agonist approved for diabetes and obesity, has shown significant potential in treating metabolic dysfunction-associated steatotic liver disease (MASLD). However, its systematic molecular regulation and mechanisms remain underexplored. In this study, a mouse model of MASLD was developed using a high-fat diet (HFD), followed by Lira administration. Proteomics and glycoproteomics were analyzed using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS), while potential molecular target analysis was conducted via quantitative real-time polymerase chain reaction (qPCR) and Western blotting. Our results revealed that Lira treatment significantly reduced liver weight and serum markers, including alanine aminotransferase (ALT) and others, with glycosylation changes playing a more significant role than overall protein expression. The glycoproteome identified 255 independent glycosylation sites, emphasizing the impact of Lira on amino acid, carbohydrate metabolism, and ferroptosis. Simultaneously, proteomic analysis highlighted its effects on lipid metabolism and fibrosis pathways. 21 signature molecules, including 7 proteins and 14 N-glycosylation sites (N-glycosites), were identified as potential targets. A Lira hydrogel formulation (Lira@fibrin (Fib) Gel) was developed to extend drug dosing intervals, offering enhanced therapeutic efficacy in managing chronic metabolic diseases. Our study demonstrated the importance of glycosylation regulation in the therapeutic effects of Lira on MASLD, identifying potential molecular targets and advancing its clinical application for MASLD treatment.
5.Integrating Internet Search Data and Surveillance Data to Construct Influenza Epidemic Thresholds in Hubei Province: A Moving Epidemic Method Approach.
Cai Xia DANG ; Feng LIU ; Heng Liang LYU ; Zi Qian ZHAO ; Si Jin ZHU ; Yang WANG ; Yuan Yong XU ; Ye Qing TONG ; Hui CHEN
Biomedical and Environmental Sciences 2025;38(9):1150-1154
6.Allergy Associated With N-glycans on Glycoprotein Allergens
Yu-Xin ZHANG ; Rui-Jie LIU ; Shao-Xing ZHANG ; Shu-Ying YUAN ; Yan-Wen CHEN ; Yi-Lin YE ; Qian-Ge LIN ; Xin-Rong LU ; Yong-Liang TONG ; Li CHEN ; Gui-Qin SUN
Progress in Biochemistry and Biophysics 2024;51(5):1023-1033
Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.
7.PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling
Qian GUO ; Jia QING ; Da-Zhuang LU ; Xu WANG ; Yang LI ; Hui ZHANG ; Ying-Fei ZHANG ; Yun-Song LIU ; Yong-Sheng ZHOU ; Ping ZHANG
Progress in Biochemistry and Biophysics 2024;51(6):1406-1417
ObjectiveProtein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Methods(1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs. Results(1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs. ConclusionIn this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases.
8.Mechanism and treatment of mucous hypersecretion in chronic ob-structive pulmonary disease
Ting ZHANG ; Rong SUN ; Yong YANG ; Weichun LIU ; Yuping YUAN ; Xu JU ; Qian WANG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):383-391
Airway mucus hypersecretion is one of the important pathophysiological and clinical manifestations of chronic obstructive pulmonary disease.It has been reported in the literature that COPD patients with chronic airway mucus hyperse-cretion have more frequent acute exacerbations,more severe lung function decline,and higher hos-pitalizations and mortality.Therefore,it is particu-larly critical to understand the pathogenesis of hy-persecretion of mucus in chronic obstructive pul-monary disease and find out effective treatment.This article focuses on the structure,significance of airway mucus and the mechanism of hypersecre-tion of mucus in chronic obstructive pulmonary dis-ease(COPD).In addition,we also summarized drug and non-drug therapy for chronic airway mucus hy-persecretion in this article.Drug therapy includes traditional drug therapy,some new targeted drug therapy for pathogenesis and traditional Chinese medicine therapy,and non-drug therapy includes smoking cessation,physical therapy and bronchos-copy therapy.We hope that it will provide new ideas and directions for the treatment of mucus hy-persecretion in COPD patients.
9.Mechanism and treatment of mucous hypersecretion in chronic ob-structive pulmonary disease
Ting ZHANG ; Rong SUN ; Yong YANG ; Weichun LIU ; Yuping YUAN ; Xu JU ; Qian WANG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):383-391
Airway mucus hypersecretion is one of the important pathophysiological and clinical manifestations of chronic obstructive pulmonary disease.It has been reported in the literature that COPD patients with chronic airway mucus hyperse-cretion have more frequent acute exacerbations,more severe lung function decline,and higher hos-pitalizations and mortality.Therefore,it is particu-larly critical to understand the pathogenesis of hy-persecretion of mucus in chronic obstructive pul-monary disease and find out effective treatment.This article focuses on the structure,significance of airway mucus and the mechanism of hypersecre-tion of mucus in chronic obstructive pulmonary dis-ease(COPD).In addition,we also summarized drug and non-drug therapy for chronic airway mucus hy-persecretion in this article.Drug therapy includes traditional drug therapy,some new targeted drug therapy for pathogenesis and traditional Chinese medicine therapy,and non-drug therapy includes smoking cessation,physical therapy and bronchos-copy therapy.We hope that it will provide new ideas and directions for the treatment of mucus hy-persecretion in COPD patients.
10.Mechanism and treatment of mucous hypersecretion in chronic ob-structive pulmonary disease
Ting ZHANG ; Rong SUN ; Yong YANG ; Weichun LIU ; Yuping YUAN ; Xu JU ; Qian WANG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(4):383-391
Airway mucus hypersecretion is one of the important pathophysiological and clinical manifestations of chronic obstructive pulmonary disease.It has been reported in the literature that COPD patients with chronic airway mucus hyperse-cretion have more frequent acute exacerbations,more severe lung function decline,and higher hos-pitalizations and mortality.Therefore,it is particu-larly critical to understand the pathogenesis of hy-persecretion of mucus in chronic obstructive pul-monary disease and find out effective treatment.This article focuses on the structure,significance of airway mucus and the mechanism of hypersecre-tion of mucus in chronic obstructive pulmonary dis-ease(COPD).In addition,we also summarized drug and non-drug therapy for chronic airway mucus hy-persecretion in this article.Drug therapy includes traditional drug therapy,some new targeted drug therapy for pathogenesis and traditional Chinese medicine therapy,and non-drug therapy includes smoking cessation,physical therapy and bronchos-copy therapy.We hope that it will provide new ideas and directions for the treatment of mucus hy-persecretion in COPD patients.

Result Analysis
Print
Save
E-mail