1.Diagnosis and treatment of cirrhotic portal hypertension with spontaneous portosystemic shunt: Current status and prospects
Yaxin CHEN ; Wen GUO ; Kaige LIU ; Qian LI ; Mingxin ZHANG
Journal of Clinical Hepatology 2025;41(1):176-182
Liver cirrhosis is the terminal stage of various chronic liver diseases, with the main clinical manifestation of portal hypertension, which can lead to spontaneous portosystemic shunt (SPSS). SPSS is very common in clinical practice and is closely associated with the prognosis of patients. This article summarizes the recent studies in the clinical significance of cirrhotic portal hypertension with SPSS, the controversies in studies, and the current status and future prospects and challenges of treatment, in order to provide a reference for the standardized diagnosis and treatment of portal hypertension.
2.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
3.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
4.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
5.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
6.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
7.Protective effect of naringin on sepsis-induced acute lung injury in mice
Che LIU ; Yuan MA ; Xu-Peng DONG ; Qian-Wen DUAN ; Jiao LEI ; Yu-Qing MA
The Chinese Journal of Clinical Pharmacology 2024;40(5):693-697
Objective To investigate the effect and mechanism of naringin on acute lung injury(ALI)in septic mice.Methods The acute lung injury mouse model of sepsis was established by intraperitoneal injection of 10 mg·kg-1 lipopolysaccharide.The mice were randomly divided into control group(injected with equal amounts of saline and phosphate buffer),model group(mouse model of sepsis acute lung injury),naringin group(50 mg·kg-1 naringin injected intraperitoneally 1 hour prior to lipopolysaccharide modeling)and BzATP group(50 mg·kg-1 naringin+5 mg·kg-1 BzATP injected intraperitoneally 1 hour prior to lipopolysaccharide modeling).After modeling,lung tissues were taken 24 h later,lung coefficients were calculated;lung tissue interleukin(-ILβ-1 β),interleukin-10(IL-10)and tumor necrosis factor-α(TNF-α)levels were detected by enzyme-linked immunosorbent assay;the expression of purinergic 2X7 receptor(P2X7R),nucleotide-binding oligomerization structural domain-like receptor protein 3(NLRP3)and nuclear factor-κB(NF-κB)proteins were detected by Western blotting.Results The lung coefficients in the control,model,naringin and BzATP groups were(6.26±0.31),(9.09±1.02),(7.02±0.45)and(8.79±0.55)mg·g-1;the contents of TNF-α were(56.41±0.35),(174.68±1.58),(85.23±1.68)and(162.97±3.42)pg·mL-1;the contents of IL-1β were(44.18±7.37),(119.91±17.16),(85.41±2.14)and(104.57±3.39)pg·mL-1;the contents of IL-10 were(50.82±2.89),(28.31±1.86),(42.82±1.98)and(25.19±1.69)pg·mL-1;P2X7 protein expression levels were 0.45±0.16,1.33±0.10,0.64±0.09 and 1.05±0.18;NF-κB protein expression levels were 0.38±0.19,1.29±0.09,0.57±0.11 and 0.92±0.07;NLRP3 protein expression levels were 0.72±0.14,1.28±0.23,0.75±0.09 and 1.27±0.23.Compared with the model group in the control group and naringin group,compared with the naringin group in the BzATP group,the differences of the above indexes were statistically significant(P<0.01,P<0.05).Conclusion Naringin attenuates acute lung injury in septic mice by inhibiting the P2X7 receptor-mediated NF-κB/NLRP3 signaling pathway.
8.Research status on the role of microbubbles in sepsis
Che LIU ; Yuan MA ; Xu-Peng DONG ; Qian-Wen DUAN ; Yu-Qing MA
The Chinese Journal of Clinical Pharmacology 2024;40(6):933-936
Micro vesicles(MVs)are the membrane structures produced by the direct outgrowth of the cell membrane,which can be involved in the pathogenesis of many diseases;MVs can also be used in the diagnosis of diseases and the prediction of prognosis.In recent years,there are more and more researches related to MVs in the field of sepsis,and the mechanism of MVs in sepsis is now reviewed.
9.UPLC-MS/MS method for the determination of isavuconazole concentration in plasma of patients with severe infection
Xiao-Yang LIU ; Bo LI ; Wen-Qian CHEN ; Yue CHEN ; Peng-Mei LI
The Chinese Journal of Clinical Pharmacology 2024;40(10):1512-1516
Objective To establish and validate a method for the detection of isavuconazole in human plasma by ultra-performance liquid chromatography-mass spectrometry,and apply to blood concentration monitoring to optimize drug treatment regimens.Methods The proteins in plasma samples were precipitated with acetonitrile;isavuconazole-D4 was used as the internal standard.Chromatographic column was ACQUITY UPLC BEH C18(2.1 mm × 50 mnm,1.7 μm),flow phase was 2 mmol·L-1 ammonium acetate-water(containing 0.1%formic acid,A),acetonitrile(containing 0.1%formic acid,B),flow rate was 0.2 mL·min-1,and the column temperature was 40 ℃.Injection volume was 1 μL.The ion pairs were quantitatively analyzed by electro-spray ionization positive ion mode and multiple reaction monitoring,m/z 438.30 → 224.15(isavuconazole),m/z 442.10 → 224.10(isavuconazole-D4).Results The linear range of isavuconazole was 0.31 to 40.00 μg·mL-1(R2=0.999 4);lower limit of quantification(LLOQ)was 0.31 μg·mL-1.The intra-day and inter-day precision ranged from 2.03%to 12.97%and 4.32%to 9.63%,the accuracy deviation ranged from 89.82%to 110.72%and 95.45%to 100.13%,the extraction recovery rates of low,medium and high concentrations ranged from 94.31%to 100.23%.The results of the blood concentrations of 14 patients with clinical use of isavuconazole measured by this method showed that all patients achieved the effective therapeutic concentration of isavuconazole(>1-2 μg·mL-1).Conclusion This method is fast,sensitive,accurate and stable,It is suitable for detecting the blood concentration of clinical isavuconazole and providing technical guidance for the adjustment of treatment regimen.
10.Mechanism and research progress of S100A8/A9 in the microenvironment before high-risk tumor metastasis
Hai-Xia MING ; Zhao-Hua LIU ; Yan-Jun WANG ; Ming SHEN ; Yan-Wen CHEN ; Yang LI ; Ling-Ling YANG ; Qian-Kun LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1991-1995
S100 calc-binding protein A8/A9(S100A8/A9)can induce the migration of primary tumor cells to distant target organs by binding multiple channel proteins,promote the formation of tumor metastasis microenvironment,and play an important role in the immune and inflammatory response of the body.It provides a new target and idea for the prevention and treatment of tumor metastasis and invasion.This paper mainly reviewed the expression and mechanism of S100A8/A9 on related channel proteins in a variety of high incidence tumors,in order to provide a new strategy for tumor prevention,diagnosis and treatment.

Result Analysis
Print
Save
E-mail