1.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
2.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
3.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*
4.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
5.Burden of congenital birth defects in children under five in China from 1990 to 2021 and prediction of future trend.
Bing-Yi HUANG ; Qin ZHAO ; Dan-Li PENG ; Man-Yi WANG ; Qian-Wen ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(3):347-353
OBJECTIVES:
To study the incidence and disease burden of congenital birth defects in children under five in China from 1990 to 2021 and to predict the incidence of congenital birth defects in this population from 2022 to 2036, providing a reference for the prevention of congenital birth defects in children.
METHODS:
Using the Global Burden of Disease Study 2021 (GBD 2021) database, the incidence and disability-adjusted life years (DALY) were employed to describe the disease burden. The Joinpoint regression model was used to analyze the trends in incidence and DALY rates of congenital birth defects in children under five. A grey prediction model GM(1,1) was applied to fit the trend of incidence rates of congenital birth defects in this age group and to predict the incidence from 2022 to 2036.
RESULTS:
In 2021, the incidence rate of congenital birth defects among children under five in China was 737.28 per 100 000. Among these, congenital musculoskeletal and limb deformities had the highest incidence rate at 307.15 per 100 000, followed by congenital heart defects (223.53 per 100 000), congenital urinary and genital tract malformations (74.99 per 100 000), and congenital gastrointestinal malformations (62.61 per 100 000). From 1990 to 2021, the incidence rate and DALY rate of congenital birth defects in children under five in China decreased at an average annual rate of 1.73% and 5.42%, respectively. The prediction analysis indicated a decreasing trend in the incidence of congenital birth defects among children under five in China from 2022 to 2036, with the incidence rate dropping from 892.36 per 100 000 in 2022 to 783.35 per 100 000 in 2036.
CONCLUSIONS
The incidence and disease burden of congenital birth defects in children under five in China showed a significant declining trend from 1990 to 2021. It is predicted that this incidence will continue to decrease until 2036.
Humans
;
Congenital Abnormalities/epidemiology*
;
China/epidemiology*
;
Incidence
;
Infant
;
Infant, Newborn
;
Child, Preschool
;
Female
;
Male
;
Forecasting
;
Disability-Adjusted Life Years
6.Prognostic Significance of Endothelial Activation and Stress Index in Mantle Cell Lymphoma.
Xin-Yue ZHOU ; Zhi-Qin YANG ; Jin HU ; Feng-Yi LU ; Qian-Nan HAN ; Huan-Huan ZHAO ; Wen-Xia GAO ; Yu-Han MA ; Hu-Jun LI ; Zhen-Yu LI ; Kai-Lin XU ; Wei CHEN
Journal of Experimental Hematology 2025;33(4):1051-1056
OBJECTIVE:
To investigate the predictive value of endothelial activation and stress index (EASIX) for the prognosis of patients with mantle cell lymphoma (MCL).
METHODS:
A retrospective analysis was conducted to assess prognosis and compare the clinical features of patients diagnosed with MCL who were admitted to the Affiliated Hospital of Xuzhou Medical University from January 2010 to June 2023, had therapeutic indications and received standard treatment.
RESULTS:
A total of 66 patients were included and divided into high EASIX group and low EASIX group, according to a cutoff value of 0.97 determined by the receiver operating characteristic (ROC) curve. Multivariate Cox regression analysis showed that prealbumin <0.2 g/L, high EASIX, and ECOG PS score ≥2 were independent risk factors influencing overall survival (OS) in MCL patients. The median OS of patients in the high and low EASIX group was 13.0 and 37.5 months, and the median progression-free survival was 8.8 and 26.0 months, respectively. The proportions of patients with ECOG PS score ≥2 and prealbumin <0.2 g/L at onset significantly increased in the high EASIX group compared to those in the low EASIX group.
CONCLUSION
At the time of initial diagnosis, EASIX can serve as an independent prognostic indicator impacting OS in patients with MCL. Furthermore, patients in the high EASIX group experience a poorer prognosis and shorter survival duration compared with those in the low EASIX group.
Humans
;
Lymphoma, Mantle-Cell/pathology*
;
Prognosis
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Aged
;
ROC Curve
7.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
8.Chinese Medicine for Treatment of COVID-19: A Review of Potential Pharmacological Components and Mechanisms.
Qian-Qian XU ; Dong-Dong YU ; Xiao-Dan FAN ; He-Rong CUI ; Qian-Qian DAI ; Xiao-Ying ZHONG ; Xin-Yi ZHANG ; Chen ZHAO ; Liang-Zhen YOU ; Hong-Cai SHANG
Chinese journal of integrative medicine 2025;31(1):83-95
Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
COVID-19 Drug Treatment
;
SARS-CoV-2/drug effects*
;
COVID-19/therapy*
;
Medicine, Chinese Traditional/methods*
;
Antiviral Agents/pharmacology*
;
Animals
9.Bacteroi des fragilis-derived succinic acid promotes the degradation of uric acid by inhibiting hepatic AMPD2: Insight into how plant-based berberine ameliorates hyperuricemia.
Libin PAN ; Ru FENG ; Jiachun HU ; Hang YU ; Qian TONG ; Xinyu YANG ; Jianye SONG ; Hui XU ; Mengliang YE ; Zhengwei ZHANG ; Jie FU ; Haojian ZHANG ; Jinyue LU ; Zhao ZHAI ; Jingyue WANG ; Yi ZHAO ; Hengtong ZUO ; Xiang HUI ; Jiandong JIANG ; Yan WANG
Acta Pharmaceutica Sinica B 2025;15(10):5244-5260
In recent decades, the prevalence of hyperuricemia and gout has increased dramatically due to lifestyle changes. The drugs currently recommended for hyperuricemia are associated with adverse reactions that limit their clinical use. In this study, we report that berberine (BBR) is an effective drug candidate for the treatment of hyperuricemia, with its mechanism potentially involving the modulation of gut microbiota and its metabolite, succinic acid. BBR has demonstrated good therapeutic effects in both acute and chronic animal models of hyperuricemia. In a clinical trial, oral administration of BBR for 6 months reduced blood uric acid levels in 22 participants by modulating the gut microbiota, which led to an increase in the abundance of Bacteroides and a decrease in Clostridium sensu stricto_1. Furthermore, Bacteroides fragilis was transplanted into ICR mice, and the results showed that Bacteroides fragilis exerted a therapeutic effect on uric acid similar to that of BBR. Notably, succinic acid, a metabolite of Bacteroides, significantly reduced uric acid levels. Subsequent cell and animal experiments revealed that the intestinal metabolite, succinic acid, regulated the upstream uric acid synthesis pathway in the liver by inhibiting adenosine monophosphate deaminase 2 (AMPD2), an enzyme responsible for converting adenosine monophosphate (AMP) to inosine monophosphate (IMP). This inhibition resulted in a decrease in IMP levels and an increase in phosphate levels. The reduction in IMP led to a decreased downstream production of hypoxanthine, xanthine, and uric acid. BBR also demonstrated excellent renoprotective effects, improving nephropathy associated with hyperuricemia. In summary, BBR has the potential to be an effective treatment for hyperuricemia through the gut-liver axis.
10.A thermo-sensitive hydrogel targeting macrophage reprogramming for sustained osteoarthritis pain relief.
Yue LIU ; Kai ZHOU ; Xinlong HE ; Kun SHI ; Danrong HU ; Chenli YANG ; Jinrong PENG ; Yuqi HE ; Guoyan ZHAO ; Yi KANG ; Yujun ZHANG ; Yue'e DAI ; Min ZENG ; Feier XIAN ; Wensheng ZHANG ; Zhiyong QIAN
Acta Pharmaceutica Sinica B 2025;15(11):6034-6051
Osteoarthritis (OA) causes chronic pain that significantly impairs quality of life, with current treatments often proving insufficient and accompanied by adverse effects. Recent research has identified the dorsal root ganglion (DRG) and its resident macrophages as crucial mediators of chronic OA pain through neuroinflammation driven by macrophage polarization. We present a novel injectable thermo-sensitive hydrogel system, KAF@PLEL, designed to deliver an anti-inflammatory peptide (KAF) specifically to the DRG. This biodegradable hydrogel enables sustained KAF release, promoting the reprogramming of DRG macrophages from pro-inflammatory to anti-inflammatory phenotypes. Through comprehensive in vitro and in vivo studies, we evaluated the hydrogel's biocompatibility, effects on macrophage polarization, and therapeutic efficacy in chronic OA pain management. The system demonstrated significant capabilities in preserving macrophage mitochondrial function, suppressing neuroinflammation, alleviating chronic OA pain, reducing cartilage degradation, and improving motor function in OA rat models. The sustained-release properties of KAF@PLEL enabled prolonged therapeutic effects while minimizing systemic exposure and side effects. These findings suggest that KAF@PLEL represents a promising therapeutic approach for improving outcomes in OA patients through targeted, sustained treatment.

Result Analysis
Print
Save
E-mail