1.Effect of 12-year-old children s pit and fissure sealants on the health of first permanent molars
LIU Jing, WEI Yonglan, QIAN Wen, HE Xiaoling, QIN Wenlong, WANG Liang
Chinese Journal of School Health 2026;47(1):100-103
Objective:
To assess the effect of 12-year-old children s pit and fissure sealants on the health of first permanent molars, so as to provide evidence for optimizing caries prevention strategies among children.
Methods:
In March 2025, a cluster random sampling method was used to conduct oral examinations on 965 students aged 12 from Chengdu s 2021 Comprehensive Intervention Program for Pediatric Oral Diseases. Data from the Comprehensive Intervention System for Children s Oral Diseases were referenced. Participants were divided into a sealed group ( n =755) and an unsealed group ( n =210) based on whether they had received sealants on their first permanent molars. Chi square test or analysis of variance were used to compare indicators such as caries incidence, new caries detection rate, and new caries mean (DMFT increment) between the two groups
Results:
The sealed group showed significantly lower caries incidence, new caries detection rate, and new caries mean (33.38%, 17.65%, 0.59±1.00) compared to the unsealed group (43.81%, 24.70%, 0.87±1.22)( χ 2/F =7.79, 18.26, 9.55, all P <0.05). However, no significant difference was found in the filled teeth ratio between the two groups (20.38% , 20.16%; χ 2=0.01, P =0.94). In girls, the sealed group exhibited significantly lower caries incidence, new caries detection rate, and new caries mean (36.78%, 20.99%, 0.69± 1.10 ) than the unsealed group (57.55%, 33.52%, 1.15±1.29) ( χ 2/F =14.42, 23.76, 10.92, all P <0.05), whereas no significant differences were observed between boys in the sealed (30.47%, 14.85%, 0.50±0.89) and unsealed groups (29.81%, 16.18%, 0.59± 1.08) ( χ 2/F =0.02, 0.41, 0.74, all P >0.05). Boys had significantly lower new caries detection rates and new caries means than girls in both groups ( χ 2/F =16.20, 6.94; 29.93, 11.84, all P <0.05). In urban areas, the sealed group had lower new caries detection rates and new caries means (19.37%, 0.68±1.04) than the unsealed group (24.66%, 0.90±1.20) ( χ 2/F =6.86, 3.94, both P <0.05). In suburban areas, all indicators for the sealed group (24.71%, 13.77%, 0.42±0.87) were significantly lower than those for the unsealed group (38.81%, 24.77%, 0.82±1.28) ( χ 2/F =5.28, 15.36, 6.00, all P <0.05). Indicators from specialized dental institutions (11.25%, 4.81%, 0.16±0.56) were significantly lower than those from county level or above general hospitals (33.33%, 19.11%, 0.38±1.00) and primary healthcare institutions (37.59%, 19.24%, 0.67±1.05) ( χ 2/F =20.99, 34.31, 21.08 , all P <0.01).
Conclusions
The 12-year-old children s pit and fissure sealants effectively reduce the caries incidence in first permanent molars, particularly showing significant effectiveness in girls and suburban children. Intervention strategies should be optimized according to gender.
2.Diagnosis and treatment of cirrhotic portal hypertension with spontaneous portosystemic shunt: Current status and prospects
Yaxin CHEN ; Wen GUO ; Kaige LIU ; Qian LI ; Mingxin ZHANG
Journal of Clinical Hepatology 2025;41(1):176-182
Liver cirrhosis is the terminal stage of various chronic liver diseases, with the main clinical manifestation of portal hypertension, which can lead to spontaneous portosystemic shunt (SPSS). SPSS is very common in clinical practice and is closely associated with the prognosis of patients. This article summarizes the recent studies in the clinical significance of cirrhotic portal hypertension with SPSS, the controversies in studies, and the current status and future prospects and challenges of treatment, in order to provide a reference for the standardized diagnosis and treatment of portal hypertension.
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
4.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
5.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
6.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
7.Sishenwan Restores Intestinal Barrier in Rat Model of Diarrhea-predominant Irritable Bowel Syndrome Due to Spleen-kidney Yang Deficiency by Regulating Intestinal Flora and Short-chain Fatty Acids
Qian ZHANG ; Siqi LI ; HUYUNLIAN ; Na WEN ; Chaoqun HUANG ; Binbin LIU ; Chengxia SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):80-89
ObjectiveTo investigate the effect and mechanism of Sishenwan in restoring the intestinal barrier function in the rat model of diarrhea-predominant irritable bowel syndrome (IBS-D) due to spleen-kidney Yang deficiency based on intestinal flora and short-chain fatty acids. MethodsAfter the delivery of 10 SPF-grade pregnant rats, 4 male suckling rats were kept in each litter for the experiment. The male suckling rats were randomly allocated into blank, model, low-dose (3.51 g·kg-1) Sishenwan, high-dose (7.02 g·kg-1) Sishenwan, and Peifeikang (0.54 g·kg-1) groups, with 8 rats in each group. The blank group was fed conventionally, and the other groups were subjected to mother-child separation and Sennae Folium gavage (1 g·mL-1, 10 mL·kg-1) for the modeling of IBS-D due to spleen-kidney Yang deficiency. After the modeling was completed, the rats in Sishenwan groups were administrated with the corresponding dose of Sishenwan decoction by gavage, and the Peifeikang group with bifidobacterium triple live powder+normal saline suspension. The blank and model groups were treated with an equal volume of normal saline by gavage. The general conditions and fecal characteristics of rats were observed. After 2 weeks of administration, the rats were anesthetized for sample collection. The pathological changes of the colon tissue in rats were observed by hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was employed to measure the levels of transforming growth factor-beta (TGF-β), interleukin-10 (IL-10), and interleukin-22 (IL-22). Immumohistochemical staining (IHC) was performed to detect the positive expression of zonula occludens-1 (ZO-1) and occludin in the colon tissue. Western blot was employed to determine the protein levels of ZO-1 and occludin in the colon tissue of rats, and 16S rRNA gene sequencing was performed for intestinal flora. Gas chromatography-mass spectrometry was employed to determine the content of short-chain fatty acids (SCFAs) in the cecum contents of rats. ResultsThe colon tissue in the blank group presented a clear structure, neat glands, and no inflammatory cell infiltration. In the model group, the colon tissue showcased a disorganized structure, irregular arrangement of glands, and inflammatory cell infiltration. Compared with the model group, the low-dose and high-dose Sishenwan groups and the Peifeikang group exhibited an intact colon tissue structure, regular arrangement of glands, and reduced inflammatory cell infiltration. Compared with the blank group, the modeling lowered the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.01), down-regulated the protein levels of ZO-1 and occludin in the colon tissue (P<0.01), and decreased the content of acetic acid and propionic acid and increased the content of butyric acid in cecum contents (P<0.05). Compared with the model group, low-dose and high-dose Sishenwan raised the levels of TGF-β, IL-10, and IL-22 in the serum (P<0.05, P<0.01), and Peifeikang elevated the levels of TGF-β and IL-10 in the serum (P<0.01). High-dose Sishenwan and Peifeikang up-regulated the protein levels of ZO-1 and occludin (P<0.05, P<0.01), increased the content of acetic acid and propionic acid in cecum contents (P<0.05), and decreased the content of butyric acid (P<0.05). The 16S rRNA gene sequencing results showed that the intestinal flora structure of the model group changed compared with that of the blank group. Compared with the model group, Sishenwan and Peifeikang increased the relative abundance of Lachnospiraceae, Muribaculaceae, Akkermansiaceae, Ligilactobacillus, UBA3282, Akkermansia, and Corynebacterium while reducing the relative abundance of Oscillospiraceae, Desulfovibrionaceae, Lactobacillus, Romboutsia, and Desulfovibrio. They can restore the intestinal flora structure similar to that in the blank group. ConclusionSishenwan can alleviate diarrhea symptoms and colonic mucosal inflammation, increase the expression of tight junction proteins in the colonic mucosa, and strengthen the intestinal barrier in IBS-D rats with the syndrome of spleen-kidney Yang deficiency. The mechanism of action may be related to optimizing the structure and balance of intestinal flora and regulating the SCFAs, and the effect of high-dose Sishenwan is obvious.
8.Mechanism of tannins from Galla chinensis cream in promoting skin wound healing in rats based on FAK/PI3K/Akt/mTOR signaling pathway.
Wen YI ; Zi-Yi YAN ; Meng-Qiong SHI ; Ying ZHANG ; Jie LIU ; Qian YI ; Hai-Ming TANG ; Yi-Wen LIU
China Journal of Chinese Materia Medica 2025;50(2):480-497
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
Animals
;
Male
;
Wound Healing/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Skin/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Tannins/pharmacology*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Focal Adhesion Kinase 1/genetics*
9.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
10.Polarized light microscopic mineral phase authentication and health risk assessment of raw and calcined fossil mineral Chinese medicinal material Draconis Os.
Yan-Qiong PAN ; Zheng LIU ; Li-Wen ZHENG ; Ying ZHANG ; Liu ZHOU ; Xi-Long QIAN ; Fang FANG ; Xiao WU ; Sheng-Jin LIU
China Journal of Chinese Materia Medica 2025;50(15):4238-4247
This study aims to investigate the polarized microscopic mineral phase characteristics, inorganic element content, and potential health risks associated with the intake of raw and calcined fossil mineral Chinese medicinal material Draconis Os. Microscopy was employed to observe the mineralogical characteristics of Draconis Os and compare the microscopic features and phase composition of raw and calcined Draconis Os under monochromatic and orthogonal polarized light. Inductively coupled plasma mass spectrometry(ICP-MS) was employed to determine the content of 30 inorganic elements. Health risk assessment was conducted by calculating the single pollution index(P_i), average daily intake of elements for adults(ADI), target hazard quotient(THQ), non-carcinogenic assessment method-hazard quotient(HQ), and the carcinogenic risk of elements(CR). The results indicated that under monochromatic polarized light, the Draconis Os powder sections exhibited light gray-brown to gray-brown irregular fragments, some with undulating textures that were slightly curved. Under crossed polarized light, they appeared dark gray, grayish-white, and yellowish-white. Clear apatite was visible in the ground sections of Draconis Os under crossed polarized light. P_i results indicated that Draconis Os samples were free from contamination and were of good quality. According to the maximum allowable limits of heavy metals stipulated in ISO Traditional Chinese Medicine: Determination of heavy metals in herbal medicines used in Traditional Chinese Medicine, ADI, THQ, HQ, and CR were taken as assessment indicators. Only the THQ value for As(arsenic) in raw Draconis Os was greater than 1, while the THQ values for other heavy metal elements in the Draconis Os samples were all less than 1. The study demonstrates that the primary mineral phase of raw and calcined Draconis Os is apatite, with some samples co-existing with calcite, which can serve as one of the means for quality control of Draconis Os. The elemental analysis results from ICP-MS provide scientific evidence for the safety assessment of Draconis Os, indicating that Draconis Os is safe in clinical application.
Drugs, Chinese Herbal/analysis*
;
Risk Assessment
;
Minerals/chemistry*
;
Fossils
;
Humans
;
Drug Contamination
;
Mass Spectrometry

Result Analysis
Print
Save
E-mail